scholarly journals Localization of denitrification genes on the chromosomal map of Pseudomonas aeruginosa

Microbiology ◽  
1998 ◽  
Vol 144 (2) ◽  
pp. 441-448 ◽  
Author(s):  
K.-U. Vollack ◽  
J. Xie ◽  
E. Hartig ◽  
U. Romling ◽  
W. G. Zumft
2021 ◽  
Vol 12 ◽  
Author(s):  
Irene H. Zhang ◽  
Susan Mullen ◽  
Davide Ciccarese ◽  
Diana Dumit ◽  
Donald E. Martocello ◽  
...  

Denitrifying microbes sequentially reduce nitrate (NO3–) to nitrite (NO2–), NO, N2O, and N2 through enzymes encoded by nar, nir, nor, and nos. Some denitrifiers maintain the whole four-gene pathway, but others possess partial pathways. Partial denitrifiers may evolve through metabolic specialization whereas complete denitrifiers may adapt toward greater metabolic flexibility in nitrogen oxide (NOx–) utilization. Both exist within natural environments, but we lack an understanding of selective pressures driving the evolution toward each lifestyle. Here we investigate differences in growth rate, growth yield, denitrification dynamics, and the extent of intermediate metabolite accumulation under varying nutrient conditions between the model complete denitrifier Pseudomonas aeruginosa and a community of engineered specialists with deletions in the denitrification genes nar or nir. Our results in a mixed carbon medium indicate a growth rate vs. yield tradeoff between complete and partial denitrifiers, which varies with total nutrient availability and ratios of organic carbon to NOx–. We found that the cultures of both complete and partial denitrifiers accumulated nitrite and that the metabolic lifestyle coupled with nutrient conditions are responsible for the extent of nitrite accumulation.


2005 ◽  
Vol 187 (12) ◽  
pp. 3960-3968 ◽  
Author(s):  
Hiroyuki Arai ◽  
Michiko Hayashi ◽  
Azusa Kuroi ◽  
Masaharu Ishii ◽  
Yasuo Igarashi

ABSTRACT The regulatory gene for a σ54-dependent-type transcriptional regulator, fhpR, is located upstream of the fhp gene for flavohemoglobin in Pseudomonas aeruginosa. Transcription of fhp was induced by nitrate, nitrite, nitric oxide (NO), and NO-generating reagents. Analysis of the fhp promoter activity in mutant strains deficient in the denitrification enzymes indicated that the promoter was regulated by NO or related reactive nitrogen species. The NO-responsive regulation was operative in a mutant strain deficient in DNR (dissimilatory nitrate respiration regulator), which is the NO-responsive regulator required for expression of the denitrification genes. A binding motif for σ54 was found in the promoter region of fhp, but an FNR (fumarate nitrate reductase regulator) box was not. The fhp promoter was inactive in the fhpR or rpoN mutant strain, suggesting that the NO-sensing regulation of the fhp promoter was mediated by FhpR. The DNR-dependent denitrification promoters (nirS, norC, and nosR) were active in the fhpR or rpoN mutants. These results indicated that P. aeruginosa has at least two independent NO-responsive regulatory systems. The fhp or fhpR mutant strains showed sensitivity to NO-generating reagents under aerobic conditions but not under anaerobic conditions. These mutants also showed significantly low aerobic NO consumption activity, indicating that the physiological role of flavohemoglobin in P. aeruginosa is detoxification of NO under aerobic conditions.


Pneumologie ◽  
2010 ◽  
Vol 64 (01) ◽  
Author(s):  
L Sprenger ◽  
T Goldmann ◽  
E Vollmer ◽  
B Wollenberg ◽  
P Zabel ◽  
...  

Pneumologie ◽  
2010 ◽  
Vol 64 (S 03) ◽  
Author(s):  
L Spenger ◽  
T Goldmann ◽  
E Vollmer ◽  
B Wollenberg ◽  
HP Hauber ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document