denitrification genes
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 30)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Christian Woehle ◽  
Sophie Roy ◽  
Nicolaas Glock ◽  
Jan Michels ◽  
Tanita Wein ◽  
...  

Benthic foraminifera are unicellular eukaryotes that inhabit sediments of aquatic environments. Several foraminifera of the order Rotaliida are known to store and use nitrate for denitrification, a unique energy metabolism among eukaryotes. The rotaliid Globobulimina spp. has been shown to encode an incomplete denitrification pathway of bacterial origins. However, the prevalence of denitrification genes in foraminifera remains unknown and the missing denitrification pathway components are elusive. Analysing transcriptomes and metagenomes of ten foraminifera species from the Peruvian oxygen minimum zone, we show that denitrification genes are highly conserved in foraminifera. We infer of the last common ancestor of denitrifying foraminifera, which enables us to predict further denitrifying species. Additionally, an examination of the foraminifera microbiota reveals evidence for a stable interaction with Desulfobacteracea, which harbour genes that complement the foraminifera denitrification pathway. Our results provide evidence that foraminiferal denitrification is complemented by the foraminifera microbiome. The interaction of Foraminifera with their resident bacteria is at the basis of foraminifera adaptation to anaerobic environments that manifested in ecological success within oxygen depleted habitats.


2021 ◽  
Author(s):  
S. Maier ◽  
A. M. Kratz ◽  
J. Weber ◽  
M. Prass ◽  
F. Liu ◽  
...  

AbstractBiological soil crusts (biocrusts) release the reactive nitrogen gases (Nr) nitrous acid (HONO) and nitric oxide (NO) into the atmosphere, but the underlying microbial process controls have not yet been resolved. In this study, we analyzed the activity of microbial consortia relevant in Nr emissions during desiccation using transcriptome and proteome profiling and fluorescence in situ hybridization. We observed that < 30 min after wetting, genes encoding for all relevant nitrogen (N) cycling processes were expressed. The most abundant transcriptionally active N-transforming microorganisms in the investigated biocrusts were affiliated with Rhodobacteraceae, Enterobacteriaceae, and Pseudomonadaceae within the Alpha- and Gammaproteobacteria. Upon desiccation, the nitrite (NO2−) content of the biocrusts increased significantly, which was not the case when microbial activity was inhibited. Our results confirm that NO2− is the key precursor for biocrust emissions of HONO and NO. This NO2− accumulation likely involves two processes related to the transition from oxygen-limited to oxic conditions in the course of desiccation: (i) a differential regulation of the expression of denitrification genes; and (ii) a physiological response of ammonia-oxidizing organisms to changing oxygen conditions. Thus, our findings suggest that the activity of N-cycling microorganisms determines the process rates and overall quantity of Nr emissions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Irene H. Zhang ◽  
Susan Mullen ◽  
Davide Ciccarese ◽  
Diana Dumit ◽  
Donald E. Martocello ◽  
...  

Denitrifying microbes sequentially reduce nitrate (NO3–) to nitrite (NO2–), NO, N2O, and N2 through enzymes encoded by nar, nir, nor, and nos. Some denitrifiers maintain the whole four-gene pathway, but others possess partial pathways. Partial denitrifiers may evolve through metabolic specialization whereas complete denitrifiers may adapt toward greater metabolic flexibility in nitrogen oxide (NOx–) utilization. Both exist within natural environments, but we lack an understanding of selective pressures driving the evolution toward each lifestyle. Here we investigate differences in growth rate, growth yield, denitrification dynamics, and the extent of intermediate metabolite accumulation under varying nutrient conditions between the model complete denitrifier Pseudomonas aeruginosa and a community of engineered specialists with deletions in the denitrification genes nar or nir. Our results in a mixed carbon medium indicate a growth rate vs. yield tradeoff between complete and partial denitrifiers, which varies with total nutrient availability and ratios of organic carbon to NOx–. We found that the cultures of both complete and partial denitrifiers accumulated nitrite and that the metabolic lifestyle coupled with nutrient conditions are responsible for the extent of nitrite accumulation.


2021 ◽  
Author(s):  
Yuying Chen ◽  
Keshao Liu ◽  
Yongqin Liu ◽  
Trista J. Vick-Majors ◽  
Feng Wang ◽  
...  

Abstract. Global warming accelerates glacier melt, releasing stored carbon and nitrogen, which fertilize downstream ecosystems. Diverse and active microbial communities mediate biogeochemical cycles in snow and are vital to the glacial ecosystem. However, little is known about their temporal changing pattern and the environmental and biotic determinants in snowpacks. Here, we investigated the bacterial community in the surface and subsurface snow (depth at 0–15 and 15–30 cm, respectively) during a nine-day period in the Dunde Glacier of the Tibetan Plateau, based on Illumina MiSeq of 16S rRNA gene sequences. Our results revealed dynamic bacterial communities in both surface and surface snow, and nitrogen is the key determinant of bacterial diversity, composition, community structure, and biotic interactions. Nitrate and ammonium concentration increased and decreased in the surface and subsurface snow over time, therefore indicating accumulation and consumption processes, respectively. This is also evidenced by the dominance of organisms predicted to carry nitrogen fixation and denitrification genes in the surface and subsurface layers, respectively. The nitrogen limitation and the apparent dominance of the denitrification in the subsurface snow suggest stronger environmental and biotic filtering than those in the surface snow. This was associated with lower bacterial diversity, more pronounced community temporal changes, and stronger biotic interactions than in the surface snow. Collectively, these findings significantly advanced our understanding of microbial community variations and bacterial interactions after snow deposition, and revealed the dynamics of nitrogen metabolism in Tibetan snow.


2021 ◽  
Vol 12 ◽  
Author(s):  
Arnaud Jéglot ◽  
Joachim Audet ◽  
Sebastian Reinhold Sørensen ◽  
Kirk Schnorr ◽  
Finn Plauborg ◽  
...  

Woodchip bioreactors are increasingly used to remove nitrate (NO3–) from agricultural drainage water in order to protect aquatic ecosystems from excess nitrogen. Nitrate removal in woodchip bioreactors is based on microbial processes, but the microbiomes and their role in bioreactor efficiency are generally poorly characterized. Using metagenomic analyses, we characterized the microbiomes from 3 full-scale bioreactors in Denmark, which had been operating for 4–7 years. The microbiomes were dominated by Proteobacteria and especially the genus Pseudomonas, which is consistent with heterotrophic denitrification as the main pathway of NO3– reduction. This was supported by functional gene analyses, showing the presence of the full suite of denitrification genes from NO3– reductases to nitrous oxide reductases. Genes encoding for dissimilatory NO3– reduction to ammonium were found only in minor proportions. In addition to NO3– reducers, the bioreactors harbored distinct functional groups, such as lignocellulose degrading fungi and bacteria, dissimilatory sulfate reducers and methanogens. Further, all bioreactors harbored genera of heterotrophic iron reducers and anaerobic iron oxidizers (Acidovorax) indicating a potential for iron-mediated denitrification. Ecological indices of species diversity showed high similarity between the bioreactors and between the different positions along the flow path, indicating that the woodchip resource niche was important in shaping the microbiome. This trait may be favorable for the development of common microbiological strategies to increase the NO3– removal from agricultural drainage water.


2021 ◽  
Vol 7 (22) ◽  
pp. eabf1586
Author(s):  
Fatma Gomaa ◽  
Daniel R. Utter ◽  
Christopher Powers ◽  
David J. Beaudoin ◽  
Virginia P. Edgcomb ◽  
...  

Oceanic deoxygenation is increasingly affecting marine ecosystems; many taxa will be severely challenged, yet certain nominally aerobic foraminifera (rhizarian protists) thrive in oxygen-depleted to anoxic, sometimes sulfidic, sediments uninhabitable to most eukaryotes. Gene expression analyses of foraminifera common to severely hypoxic or anoxic sediments identified metabolic strategies used by this abundant taxon. In field-collected and laboratory-incubated samples, foraminifera expressed denitrification genes regardless of oxygen regime with a putative nitric oxide dismutase, a characteristic enzyme of oxygenic denitrification. A pyruvate:ferredoxin oxidoreductase was highly expressed, indicating the capability for anaerobic energy generation during exposure to hypoxia and anoxia. Near-complete expression of a diatom’s plastid genome in one foraminiferal species suggests kleptoplasty or sequestration of functional plastids, conferring a metabolic advantage despite the host living far below the euphotic zone. Through a unique integration of functions largely unrecognized among “typical” eukaryotes, benthic foraminifera represent winning microeukaryotes in the face of ongoing oceanic deoxygenation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Liping Wang ◽  
Zongze Shao

Bacteria of Halomonas are widely distributed in various environments and play a substantial role in the nutrient cycle. In this report, 14 strains capable of aerobic denitrification and heterotrophic sulfur oxidation were isolated from different habitats. Based on the phenotypic, genotypic, and chemotaxonomic analyses, these strains were considered to represent six novel species of the genus Halomonas, for which the names Halomonas zhangzhouensis sp. nov. type strain CXT3-11T ( = MCCC 1A11036T = KCTC 72087T), Halomonas aerodenitrificans sp. nov. CYD-9T ( = MCCC 1A11058T = KCTC 72088T), Halomonas sulfidoxydans sp. nov. CYN-1-2T ( = MCCC 1A11059T = KCTC 72089T), Halomonas ethanolica sp. nov. CYT3-1-1T ( = MCCC 1A11081T = KCTC 72090T), Halomonas sulfidivorans sp. nov. NLG_F1ET ( = MCCC 1A13718T = KCTC 72091T), and Halomonas tianxiuensis sp. nov. BC-M4-5T ( = MCCC 1A14433T = KCTC 72092T) are proposed. Intriguingly, they formed a unique group with 11 other species designated as the “H. desiderata group.” To better understand their featured metabolisms, genes involved in denitrification and sulfur oxidation were analyzed, along with 193 other available genomes of the whole genus. Consistently, complete denitrification pathways were confirmed in the “H. desiderata group,” in which napA, narG, nirS, norB, and nosZ genes coexist. Their nitrite reductase NirS formed a unique evolutionary lineage, distinguished from other denitrifiers in Halomonas. In addition, diverse occurrence patterns of denitrification genes were also observed in different phylogenetic clades of Halomonas. With respect to sulfur oxidation, fccAB genes involved in sulfide oxidation commonly exist in the “H. desiderata group,” while sqr genes are diverse and can be found in more species; sqr genes co-occurred with fccAB in eight strains of this study, contributing to more active sulfide oxidation. Besides, the tsdA gene, which encodes an enzyme that oxidizes thiosulfate to tetrathionate, is ubiquitous in the genus Halomonas. The widespread presence of sqr/fccAB, pdo, and tsdA in Halomonas suggests that many Halomonas spp. can act as heterotrophic sulfur oxidizers. These results provide comprehensive insights into the potential of denitrification and sulfur oxidation in the whole genus of Halomonas. With regard to the global distribution of Halomonas, this report implies their unneglectable role in the biogeochemical cycle.


2021 ◽  
Author(s):  
Anna Störiko ◽  
Holger Pagel ◽  
Adrian Mellage ◽  
Olaf A. Cirpka

&lt;p&gt;Biomolecular quantities like gene, transcript or enzyme concentrations related to a specific reaction promise to provide information about the turnover of nutrients or contaminants in the environment. Particularly transcript-to-gene ratios have been suggested to provide a measure for reaction rates but a relationship with rates currently lacks validation.&lt;br&gt;We applied an enzyme-based reactive transport model for denitrification and aerobic respiration at the river-groundwater interface to simulate the temporal and spatial patterns of transcripts, enzymes and biomass under diurnal dissolved oxygen fluctuations.&lt;br&gt;Our analysis showed that transcript concentrations of denitrification genes exhibit considerable diurnal fluctuations, whereas enzyme concentrations and biomass are stable over time. The daily fluctuations in denitrification rates yielded a poor correlation between rates and transcript and enzyme concentrations. Daily averaged reaction rates, however, show a close-to-linear relationship with enzyme concentrations and mean transcript concentrations.&lt;br&gt;Our findings suggest that, under dynamic environmental conditions, single-event sampling may result in the misinterpretation of biomelucular quantities as these relate to reaction rates. A better representation of rates can be achieved via sampling that captures the temporal variability of a particular system.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document