scholarly journals Halostagnicola bangensis sp. nov., an alkaliphilic haloarchaeon from a soda lake

2015 ◽  
Vol 65 (Pt_3) ◽  
pp. 754-759 ◽  
Author(s):  
Paulina Corral ◽  
Angela Corcelli ◽  
Antonio Ventosa

An extremely haloalkaphilic archaeon, strain T26T, belonging to the genus Halostagnicola , was isolated from sediment of the soda lake Bange in the region of Tibet, China. Phylogenetic analysis based on 16S rRNA gene sequence similarities showed that strain T26T was closely related to Halostagnicola alkaliphila 167-74T (98.4 %), Halostagnicola larsenii XH-48T (97.5 %) and Halostagnicola kamekurae 194-10T (96.8 %). Strain T26T grew optimally in media containing 25 % (w/v) salts, at pH 9.0 and 37 °C in aerobic conditions. Mg2+ was not required for growth. The cells were motile, pleomorphic and Gram-stain-variable. Colonies of this strain were pink pigmented. Hypotonic treatment caused cell lysis. The polar lipids of the isolate consisted of C20C20 and C20C25 derivatives of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and minor phospholipids components. Glycolipids were not detected, in contrast to the two neutrophilic species of this genus. The genomic DNA G+C content of strain T26T was 60.1 mol% and DNA–DNA hybridization showed a relatedness of 19 and 17 % with Halostagnicola alkaliphila CECT 7631T and Halostagnicola larsenii CECT 7116T, respectively. The comparison of 16S rRNA gene sequences, detailed phenotypic characterization, polar lipid profile and DNA–DNA hybridization studies revealed that strain T26T belongs to the genus Halostagnicola , and represents a novel species for which the name Halostagnicola bangensis sp. nov. is proposed. The type strain is T26T ( = CECT 8219T = IBRC-M 10759T = JCM 18750T).

2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 104-108 ◽  
Author(s):  
P. Corral ◽  
M. C. Gutiérrez ◽  
A. M. Castillo ◽  
M. Domínguez ◽  
P. Lopalco ◽  
...  

A novel halophilic archaeon, strain CG-1T, belonging to the genus Natronococcus was isolated from sediment of the soda lake Chagannor in Inner Mongolia, China. The colonies of this strain were pink pigmented, the intensity of the colour decreased when the cells grew at salt saturation levels. The cells were non-motile cocci and strictly aerobic. Hypotonic treatment did not cause cell lysis, even in distilled water. Strain CG-1T grew at 15–30.0 % (w/v) NaCl and at 30–50 °C and pH 8.0–11.0, with optimal growth occurring at 25–30 % (w/v) NaCl, 37–45 °C and pH 9–9.5. MgCl2 was not required for growth. Strain CG-1T was most closely related to the type strains of Natronococcus amylolyticus Ah-36T, Natronococcus jeotgali B1T and Natronococcus occultus SP4T, with which it shared 98.4 %, 96.2 and 95.7 % 16S rRNA gene sequence similarity, respectively. The polar lipids consisted of C20C20 and C20C25 derivatives of phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me) and minor phospholipid components. No glycolipids were detected. The DNA G+C content of strain CG-1T was 62.1 mol%. DNA–DNA hybridization with N. amylolyticus DSM 10524T, phylogenetically the most closely related species, was 39 %; this value showed that strain CG-1T constituted a different genospecies. The comparison of 16S rRNA gene sequences, detailed phenotypic characterization, polar lipid profile and DNA–DNA hybridization studies revealed that strain CG-1T belongs to the genus Natronococcus and constitutes a novel species for which the name Natronococcus roseus sp. nov. is proposed. The type strain is CG-1T ( = CECT 7984T = IBRC-M 10656T = JCM 17958T).


2014 ◽  
Vol 64 (Pt_10) ◽  
pp. 3341-3345 ◽  
Author(s):  
Jia-Fa Wu ◽  
Jie Li ◽  
Zhi-Qing You ◽  
Si Zhang

A novel Gram-stain-positive actinobacterium, designated strain SCSIO 11529T, was isolated from tissues of the stony coral Galaxea fascicularis, and characterized by using a polyphasic approach. The temperature range for growth was 22–50 °C (optimum 28–45 °C), the pH range for growth was 6.0–8.0 (optimum pH 7.0), and the NaCl concentration range for growth was 0–7 % (w/v) NaCl. The polar lipid profile contained diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine and an unknown polar lipid. The predominant menaquinone was MK-9(H4). The major fatty acids (>10 %) were iso-C16 : 0, iso-C17 : 1ω6c, iso-C16 : 1 H and C16 : 1ω7c/iso-C15 : 0 2-OH. The DNA G+C content of strain SCSIO 11529T was 70.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain SCSIO 11529T belongs to the genus Prauserella , with the closest neighbours being Prauserella marina MS498T (97.0 % 16S rRNA gene sequence similarity), Prauserella rugosa DSM 43194T (96.4 %) and Prauserella flava YIM 90630T (95.9 %). Based on the evidence of the present study, strain SCSIO 11529T is considered to represent a novel species of the genus Prauserella , for which the name Prauserella coralliicola sp. nov. is proposed. The type strain is SCSIO 11529T ( = DSM 45821T = NBRC 109418T).


2013 ◽  
Vol 63 (Pt_7) ◽  
pp. 2684-2689 ◽  
Author(s):  
V. Venkata Ramana ◽  
P. Shalem Raj ◽  
L. Tushar ◽  
Ch. Sasikala ◽  
Ch. V. Ramana

Two strains (JA643T and JA755) of Gram-stain-negative, facultatively anaerobic phototrophic, bacteria capable of growth at low temperatures (10–15 °C) were isolated from freshwater streams from different geographical regions of India. Both strains contain bacteriochlorophyll a and carotenoids of the spirilloxanthin series. Phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified phospholipid (PL), unidentified amino lipids (AL1–AL6, AL9) and an unidentified lipid (L1) were the polar lipids present in both strains. The major cellular fatty acid was C18 : 1ω7c (76–79 % of the total). Bacteriohopane derivatives (BHD1,2), unidentified hopanoids (UH1–5), diplopterol (DPL) and diploptene (DPE) were the major hopanoids of both strains. The DNA G+C content was 64.2–64.5 mol%. 16S rRNA gene sequence-based phylogenetic analysis showed that both strains are closely related to the genus Rhodomicrobium and clustered with Rhodomicrobium vannielii DSM 162T (99 % sequence similarity). However, both strains exhibited only 46.1 % DNA–DNA hybridization with R. vannielii DSM 162T. Strains JA643T and JA755 shared >99 % 16S rRNA gene sequence similarity and were >85 % related on the basis of DNA–DNA hybridization; they are therefore considered to represent a novel species in the genus Rhodomicrobium , for which the name Rhodomicrobium udaipurense sp. nov. is proposed. The type strain is JA643T ( = KCTC 15219T = NBRC 109057T).


2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 208-211 ◽  
Author(s):  
Lourdes Martínez-Aguilar ◽  
Jesús Caballero-Mellado ◽  
Paulina Estrada-de los Santos

Phylogenetic analysis of the 16S rRNA gene sequences of strains TE26T and K6 belonging to Wautersia numazuensis Kageyama et al. 2005 showed the strains to be deeply intermingled among the species of the genus Cupriavidus . The comparison showed that strain TE26T was closely related to the type strains of Cupriavidus pinatubonensis (99.1 % 16S rRNA gene sequence similarity), C. basilensis (98.7 %), C. necator (98.7 %) and C. gilardii (98.0 %). However, DNA–DNA hybridization experiments (less than 20 % relatedness) demonstrated that strain TE26T is different from these Cupriavidus species. A comparative phenotypic and chemotaxonomic analysis (based on fatty acid profiles) in combination with the 16S rRNA gene sequence phylogenetic analysis and the DNA–DNA hybridization results supported the incorporation of Wautersia numazuensis into the genus Cupriavidus as Cupriavidus numazuensis comb. nov.; the type strain is TE26T ( = LMG 26411T  = DSM 15562T  = CIP 108892T).


2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 491-496 ◽  
Author(s):  
Gareth J. Everest ◽  
Sarah M. Curtis ◽  
Filomena De Leo ◽  
Clara Urzì ◽  
Paul R. Meyers

A novel actinobacterium, strain BC637T, was isolated from a biodeteriogenic biofilm sample collected in 2009 in the Saint Callixstus Roman catacomb. The strain was found to belong to the genus Kribbella by analysis of the 16S rRNA gene. Phylogenetic analysis using the 16S rRNA gene and the gyrB, rpoB, relA, recA and atpD concatenated gene sequences showed that strain BC637T was most closely related to the type strains of Kribbella lupini and Kribbella endophytica . DNA–DNA hybridization experiments confirmed that strain BC637T is a genomic species that is distinct from its closest phylogenetic relatives, K. endophytica DSM 23718T (63 % DNA relatedness) and K. lupini LU14T (63 % DNA relatedness). Physiological comparisons showed that strain BC637T is phenotypically distinct from the type strains of K. endophytica and K. lupini . Thus, strain BC637T represents the type strain of a novel species, for which the name Kribella italica sp. nov. is proposed ( = DSM 28967T = NRRL B-59155T).


2020 ◽  
Vol 70 (5) ◽  
pp. 3323-3327 ◽  
Author(s):  
Qian Wang ◽  
Sheng-Dong Cai ◽  
Jie Liu ◽  
De-Chao Zhang

The Gram-strain-negative, rod-shaped, facultatively anaerobic, non-motile bacterial strain, designated S1-10T, was isolated from marine sediment. Strain S1-10T grew at 4–42 °C (optimally at 30–35 °C), at pH 7.0–10 (optimally at pH 9) and in the presence of 0.5–8 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain S1-10T was related to the genus Aequorivita and had highest 16S rRNA gene sequence similarity to Aequorivita viscosa 8-1bT (97.7%). The predominant cellular fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The main respiratory quinone was menaquinone 6 (MK-6). The genomic DNA G+C content of strain S1-10T was 34.6 mol%. The polar lipid profile of strain S1-10T contained phosphatidylethanolamine, two aminolipids, two glycolipids, one phosphoglycolipid and three unidentified polar lipids. In addition, the maximum values of in silico DNA–DNA hybridization (isDDH) and average nucleotide identity (ANI) between strain S1-10T and A. viscosa CGMCC 1.11023T were 15.4 and 75.7 %, respectively. Combined data from phenotypic, phylogenetic, isDDH and ANI analyses demonstrated that strain S1-10T is the representative of a novel species of the genus Aequorivita , for which we propose the name Aequorivita sinensis sp. nov. (type strain S1-10T=CGMCC 1.12579T=JCM 19789T). We also propose that Vitellibacter todarodis and Vitellibacter aquimaris should be transferred into genus Aequorivita and be named Aequorivita todarodis comb. nov. and Aequorivita aquimaris comb. nov., respectively. The type strain of Aequorivita todarodis comb. nov. is MYP2-2T (= KCTC 62141T= NBRC 113025T) and the type strain of Aequorivita aquimaris comb. nov. is D-24T (=KCTC 42708T=DSM 101732T).


Author(s):  
Shuai Wang ◽  
Rui Yang ◽  
Lian Xu ◽  
Ya-Ting Xing ◽  
Ji-Quan Sun

p-Hydroxybenzoate is an allelopathic compound commonly found in soil from long-term monoculture cropping systems. During the bacterial diversity analysis of saline soil, a Gram-negative, non-spore forming, non-motile, aerobic p-hydroxybenzoate-degrading bacterial strain, designated LN3S51T, was isolated from saline soil which was sampled from Tumd Right Banner, Inner Mongolia, northern China. Strain LN3S51T grew at 4–40 °C (optimum, 30 °C), pH 5.0–10.0 (optimum, pH 7.0) and 0–15 % NaCl (optimum 3.0 %). Though strain LN3S51T has the highest 16S rRNA gene similarities to Litoreibacter ponti GJSW-31T (96.0 %), the phylogenetic tree based on the 16S rRNA gene sequences showed that it clustered with Fluviibacterium aquatile SM1902T (95.8 %), Meridianimarinicoccus roseus TG-679T (93.9 %), and Phycocomes zhengii LMIT002T (93.9 %). Strain LN3S51T contained Q-10 as the major ubiquinone. Phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine (PC), diphosphatidylglycerol (DPG), an unidentified aminolipid (AL), and two unidentified lipids (L) were the major polar lipids. The major fatty acids were sum feature 8 (C18 : 1  ω7c and/or C18 : 1  ω6c), C16 : 0, C18 : 0, and C18 : 1  ω7c 11-methyl. The genome of strain LN3S51T consisted of a 2 257 066 bp chromosome and four plasmids with a 59.1 mol% of genomic DNA G+C content. The average nucleotide identity (ANI) and digital DNA–DNA hybridization score (dDDH) values of strain LN3S51T to F. aquatile SM1902T, M. roseus TG-679T, P. zhengii LMIT002T, and L. ponti GJSW-31T were 69.6, 70.9, 70.6, and 69.5 %, and 20.0, 19.5, 19.0, and 20.0 %, respectively. Based on the results of phylogenetic, chemtaxonomic and phenotypic characterization, strain LN3S51T is considered to represent a novel species in a new genus within the family Rhodobacteraceae , for which Qingshengfaniella alkalisoli gen. nov., sp. nov. is proposed. The type strain is LN3S51T (=CGMCC 1.17099T=KCTC 72457T).


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3804-3809 ◽  
Author(s):  
Samantha J. Stropko ◽  
Shannon E. Pipes ◽  
Jeffrey D. Newman

While characterizing a related strain, it was noted that there was little difference between the 16S rRNA gene sequences of Bacillus indicus LMG 22858T and Bacillus cibi DSM 16189T. Phenotypic characterization revealed differences only in the utilization of mannose and galactose and slight variation in pigmentation. Whole genome shotgun sequencing and comparative genomics were used to calculate established phylogenomic metrics and explain phenotypic differences. The full, genome-derived 16S rRNA gene sequences were 99.74 % similar. The average nucleotide identity (ANI) of the two strains was 98.0 %, the average amino acid identity (AAI) was 98.3 %, and the estimated DNA–DNA hybridization determined by the genome–genome distance calculator was 80.3 %. These values are higher than the species thresholds for these metrics, which are 95 %, 95 % and 70 %, respectively, suggesting that these two strains should be classified as members of the same species. We propose reclassification of Bacillus cibi as a later heterotypic synonym of Bacillus indicus and an emended description of Bacillus indicus .


2014 ◽  
Vol 64 (Pt_7) ◽  
pp. 2400-2406 ◽  
Author(s):  
Bungonsiri Intra ◽  
Atsuko Matsumoto ◽  
Yuki Inahashi ◽  
Satoshi Ōmura ◽  
Watanalai Panbangred ◽  
...  

A novel actinomycete, strain 30EHST, was isolated from the rhizospheric soil under an elephant ear plant (Caladium bicolor) in Jomthong district, Bangkok, Thailand. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 30EHST fell within the cluster of the genus Streptosporangium . Chemical composition analysis confirmed that the strain represented a member of the genus Streptosporangium even though this strain produced a tightly packed single spore on aerial hyphae. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that strain 30EHST was most closely related to Streptosporangium fragile NBRC 14311T (98.1 %), Streptosporangium carneum NBRC 15562T (97.8 %) and Streptosporangium violaceochromogenes NBRC 15560T (97.4 %). The DNA–DNA hybridization relatedness values between strain 30EHST and the above three strains were below 70 %. Based on combined data for phylogenetic analysis, DNA–DNA hybridization relatedness and physiological characteristics, it was concluded that strain 30EHST should be classified as representing a novel species of the genus Streptosporangium . We propose the name Streptosporangium jomthongense sp. nov., with the type strain 30EHST ( = BCC 53154T = NBRC 110047T). An emended description of the genus Streptosporangium is also proposed.


2015 ◽  
Vol 65 (Pt_1) ◽  
pp. 56-64 ◽  
Author(s):  
Ivana Orthová ◽  
Peter Kämpfer ◽  
Stefanie P. Glaeser ◽  
René Kaden ◽  
Hans-Jürgen Busse

A Gram-negative, rod-shaped and motile bacterial isolate, designated strain NS9T, isolated from air of the Sainsbury Centre for Visual Arts in Norwich, UK, was subjected to a polyphasic taxonomic study including phylogenetic analyses based on partial 16S rRNA, gyrB and lepA gene sequences and phenotypic characterization. The 16S rRNA gene sequence of NS9T identified Massilia haematophila CCUG 38318T, M. niastensis 5516S-1T (both 97.7 % similarity), M. aerilata 5516S-11T (97.4 %) and M. tieshanensis TS3T (97.4 %) as the next closest relatives. In partial gyrB and lepA sequences, NS9T shared the highest similarities with M. haematophila CCUG 38318T (94.5 %) and M. aerilata 5516-11T (94.3 %), respectively. These sequence data demonstrate the affiliation of NS9T to the genus Massilia . The detection of the predominant ubiquinone Q-8, a polar lipid profile consisting of the major compounds diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol and a polyamine pattern containing 2-hydroxyputrescine and putrescine were in agreement with the assignment of strain NS9T to the genus Massilia . Major fatty acids were summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH), C16 : 0, C18 : 1ω7c and C10 : 0 3-OH. Dissimilarities in partial lepA and gyrB gene sequences as well as results from DNA–DNA hybridizations demonstrate that strain NS9T is a representative of an as-yet undescribed species of the genus Massilia that is also distinguished from its close relatives based on physiological and biochemical traits. Hence, we describe a novel species, for which we propose the name Massilia norwichensis sp. nov., with the type strain NS9T ( = CCUG 65457T = LMG 28164T).


Sign in / Sign up

Export Citation Format

Share Document