scholarly journals Sulfitobacter undariae sp. nov., isolated from a brown algae reservoir

2015 ◽  
Vol 65 (Pt_5) ◽  
pp. 1672-1678 ◽  
Author(s):  
Sooyeon Park ◽  
Yong-Taek Jung ◽  
Sung-Min Won ◽  
Ji-Min Park ◽  
Jung-Hoon Yoon

A Gram-stain-negative, aerobic, non-spore-forming, non-flagellated and coccoid, ovoid or rod-shaped bacterial strain, W-BA2T, was isolated from a brown algae reservoir in Wando of South Korea. Strain W-BA2T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of approximately 2.0–3.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain W-BA2T fell within the clade comprising the type strains of species of the genus Sulfitobacter , clustering coherently with the type strains of Sulfitobacter donghicola and Sulfitobacter guttiformis showing sequence similarity values of 98.0–98.1 %. Sequence similarities to the type strains of the other species of the genus Sulfitobacter were 96.0–97.4 %. Strain W-BA2T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The major polar lipids of strain W-BA2T were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid. The DNA G+C content of strain W-BA2T was 55.0 mol% and its DNA–DNA relatedness values with the type strains of Sulfitobacter donghicola , Sulfitobacter guttiformis and Sulfitobacter mediterraneus were 16–23 %. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain W-BA2T is separated from other species of the genus Sulfitobacter . On the basis of the data presented, strain W-BA2T is considered to represent a novel species of the genus Sulfitobacter , for which the name Sulfitobacter undariae sp. nov. is proposed. The type strain is W-BA2T ( = KCTC 42200T = NBRC 110523T).

2013 ◽  
Vol 63 (Pt_12) ◽  
pp. 4771-4776 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Sooyeon Park

A Gram-stain-negative, non-flagellated, rod-shaped bacterial strain able to move by gliding, designated WS-MY22T, was isolated from sediment around a brown algae reservoir located on Wando in South Korea. It grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences showed that strain WS-MY22T clustered coherently with the type strains of Algibacter lectus and Algibacter undariae . It exhibited sequence similarity of 99.4 and 98.9 % to the type strains of A. lectus and A. undariae , respectively, and of 95.1–96.6 % to those of the other species of the genus Algibacter . Strain WS-MY22T contained MK-6 as the predominant menaquinone and iso-C15 : 1 G and iso-C17 : 0 3-OH as the major fatty acids. The major polar lipids of strain WS-MY22T were phosphatidylethanolamine and two unidentified lipids. The DNA G+C content of strain WS-MY22T was 35.8 mol% and its DNA–DNA relatedness with A. lectus KCTC 12103T and A. undariae WS-MY9T was 31 and 19 %, respectively. The phylogenetic and genetic distinctiveness and differential phenotypic properties revealed that strain WS-MY22T is separate from other species of the genus Algibacter . On the basis of the data presented, strain WS-MY22T is considered to represent a novel species of the genus Algibacter , for which the name Algibacter wandonensis sp. nov. is proposed. The type strain is WS-MY22T ( = KCTC 32381T = CECT 8301T).


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1741-1745 ◽  
Author(s):  
Sooyeon Park ◽  
Jung-Hoon Yoon

A Gram-negative, motile and ovoid- to rod-shaped bacterial strain, designated M-M10T, was isolated from a seashore sediment collected from the South Sea, South Korea. Strain M-M10T grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 2 % (w/v) NaCl. The phylogenetic trees based on 16S rRNA gene sequences revealed that strain M-M10T clustered with the type strains of Roseovarius crassostreae , Roseovarius halocynthiae and Roseovarius marinus , with which it exhibited sequence similarities of 97.4, 97.3 and 95.1 %, respectively. It exhibited 93.2–95.1 % sequence similarity to the type strains of the other species of the genus Roseovarius . Strain M-M10T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c and C16 : 0 as the major fatty acids, as observed in the genus Roseovarius . The polar lipid profile of strain M-M10T was similar to that of Roseovarius tolerans DSM 11457T. The DNA G+C content of strain M-M10T was 63.0 mol% and its mean DNA–DNA relatedness values with Roseovarius crassostreae DSM 16950T and Roseovarius halocynthiae MA1-10T were 16 % and 22 %, respectively. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, demonstrated that strain M-M10T is distinct from other species of the genus Roseovarius . On the basis of the data presented, strain M-M10T is considered to represent a novel species of the genus Roseovarius , for which the name Roseovarius sediminilitoris sp. nov. is proposed. The type strain is M-M10T ( = KCTC 23959T = CCUG 62413T).


2014 ◽  
Vol 64 (Pt_12) ◽  
pp. 3943-3949 ◽  
Author(s):  
Yong-Taek Jung ◽  
Sooyeon Park ◽  
Jung-Sook Lee ◽  
Jung-Hoon Yoon

A Gram-stain-negative, coccoid- or oval-shaped, gliding bacterial strain, designated HDW-31T, belonging to the class Alphaproteobacteria , was isolated from seawater of the Yellow Sea, Korea, and was subjected to a taxonomic study using a polyphasic approach. Strain HDW-31T grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 2–3 % (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain HDW-31T fell within the clade comprising the genus Altererythrobacter , clustering with the type strains of Altererythrobacter luteolus and Altererythrobacter gangjinensis , with which strain HDW-31T exhibited 97.0 and 96.0 % sequence similarity values, respectively. Sequence similarities to the type strains of the other recognized species of the genus Altererythrobacter were 93.5–96.0 %. The DNA G+C content was 57.9 mol% and mean DNA–DNA relatedness between strain HDW-31T and the type strain of A. luteolus was 5.3 %. Strain HDW-31T contained Q-10 as the predominant ubiquinone and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c) and C16 : 0 as the major fatty acids. The major polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, a sphingoglycolipid, two unidentified glycolipids and an unidentified lipid. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, demonstrated that strain HDW-31T is distinguishable from recognized species of the genus Altererythrobacter . On the basis of the data presented, strain HDW-31T is considered to represent a novel species of the genus Altererythrobacter , for which the name Altererythrobacter aestiaquae sp. nov. is proposed. The type strain is HDW-31T ( = KCTC 42006T = CECT 8527T).


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3810-3815 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Doo-Sang Park ◽  
Jung-Hoon Yoon

A Gram-stain-negative, aerobic, non-motile and coccoid, ovoid or rod-shaped bacterial strain, designated GJSW-31T, was isolated from seawater from the South Sea, South Korea. The novel strain grew optimally at 30 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. Phylogenetic trees, based on 16S rRNA gene sequences, revealed that strain GJSW-31T clustered with the type strains of species of the genus Litoreibacter . Strain GJSW-31T exhibited 16S rRNA gene sequence similarity values of 95.2–98.5 % to the type strains of species of the genus Litoreibacter and sequence similarities of less than 96.18 % to type strains of the other species with validly published names. Strain GJSW-31T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The major polar lipids of strain GJSW-31T were phosphatidylcholine, phosphatidylglycerol, one unidentified lipid and one unidentified aminolipid. The DNA G+C content of strain GJSW-31T was 62.5 mol% and its DNA–DNA relatedness values with the type strains of Litoreibacter albidus , Litoreibacter janthinus , Litoreibacter meonggei and Litoreibacter ascidiaceicola were 13–23 %. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain GJSW-31T is separate from other species of the genus Litoreibacter . On the basis of the data presented, strain GJSW-31T is considered to represent a novel species of the genus Litoreibacter , for which the name Litoreibacter ponti sp. nov. is proposed. The type strain is GJSW-31T ( = KCTC 42114T = NBRC 110379T).


2013 ◽  
Vol 63 (Pt_11) ◽  
pp. 4130-4135 ◽  
Author(s):  
Sooyeon Park ◽  
Jung-Sook Lee ◽  
Keun-Chul Lee ◽  
Jung-Hoon Yoon

A strain of Gram-staining-negative, aerobic, non-flagellated, non-gliding and rod-shaped bacteria, designated WS-MY3T, was isolated from a brown algae reservoir in South Korea. Strain WS-MY3T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 2.0–3.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences showed that strain WS-MY3T fell within the cluster comprising the type strains of species of the genus Formosa , clustering coherently with the type strains of Formosa agariphila and Formosa algae . It exhibited 16S rRNA gene sequence similarity values of 98.7, 97.9 and 96.8 % to the type strains of F. agariphila, F. algae and Formosa spongicola , respectively. Strain WS-MY3T contained MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C16 : 0 3-OH, iso-C15 : 1 G and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) as the major fatty acids. The major polar lipids of strain WS-MY3T were phosphatidylethanolamine and two unidentified lipids. The DNA G+C content of strain WS-MY3T was 37.3 mol% and its DNA–DNA relatedness values with F. agariphila KCTC 12365T and F. algae KCTC 12364T were 23 % and 17 %, respectively. The phylogenetic and genetic distinctiveness and differential phenotypic properties revealed that strain WS-MY3T is separate from the three recognized species of the genus Formosa . On the basis of the data presented, strain WS-MY3T is considered to represent a novel species of the genus Formosa , for which the name Formosa undariae sp. nov. is proposed. The type strain is WS-MY3T ( = KCTC 32328T = CECT 8286T).


2014 ◽  
Vol 64 (Pt_12) ◽  
pp. 4068-4072 ◽  
Author(s):  
Young-Ok Kim ◽  
Sooyeon Park ◽  
Doo Nam Kim ◽  
Bo-Hye Nam ◽  
Sung-Min Won ◽  
...  

A Gram-stain-negative, aerobic, non-spore-forming, non-flagellated and rod-shaped or ovoid bacterial strain, designated RA1T, was isolated from faeces collected from Beluga whale (Delphinapterus leucas) in Yeosu aquarium, South Korea. Strain RA1T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences revealed that strain RA1T joins the cluster comprising the type strains of three species of the genus Amphritea , with which it exhibited 95.8–96.0 % sequence similarity. Sequence similarities to the type strains of other recognized species were less than 94.3 %. Strain RA1T contained Q-8 as the predominant ubiquinone and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C18 : 1ω7c and C16 : 0 as the major fatty acids. The major polar lipids of strain RA1T were phosphatidylethanolamine, phosphatidylglycerol, two unidentified lipids and one unidentified aminolipid. The DNA G+C content of strain RA1T was 47.4 mol%. The differential phenotypic properties, together with the phylogenetic distinctiveness, revealed that strain RA1T is separated from other species of the genus Amphritea . On the basis of the data presented, strain RA1T is considered to represent a novel species of the genus Amphritea , for which the name Amphritea ceti sp. nov. is proposed. The type strain is RA1T ( = KCTC 42154T = NBRC 110551T).


2012 ◽  
Vol 62 (Pt_6) ◽  
pp. 1348-1353 ◽  
Author(s):  
Hui-xian Wu ◽  
Pok Yui Lai ◽  
On On Lee ◽  
Xiao-jian Zhou ◽  
Li Miao ◽  
...  

A novel Gram-negative, aerobic, catalase- and oxidase-positive, non-sporulating, non-motile, rod-shaped bacterium, designated strain UST081027-248T, was isolated from seawater of the Red Sea. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain UST081027-248T fell within the genus Erythrobacter . Levels of 16S rRNA gene sequence similarity between the novel strain and the type strains of Erythrobacter species ranged from 95.3 % (with Erythrobacter gangjinensis ) to 98.2 % (with Erythrobacter citreus ). However, levels of DNA–DNA relatedness between strain UST081027-248T and the type strains of closely related species were below 70 %. Optimal growth of the isolate occurred in the presence of 2.0 % NaCl, at pH 8.0–9.0 and at 28–36 °C. The isolate did not produce bacteriochlorophyll a. The predominant cellular fatty acids were C17 : 1ω6c, summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c) and C15 : 0 2-OH. The genomic DNA G+C content of strain UST081027-248T was 60.4 mol%. Phenotypic properties and phylogenetic distinctiveness clearly indicated that strain UST081027-248T represents a novel species of the genus Erythrobacter , for which the name Erythrobacter pelagi sp. nov. is proposed. The type strain is UST081027-248T ( = JCM 17468T = NRRL 59511T).


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1793-1799 ◽  
Author(s):  
Chul-Hyung Kang ◽  
Soo-Young Lee ◽  
Jung-Hoon Yoon

A Gram-staining-negative, non-flagellated, non-gliding, aerobic, rod-shaped bacterium, designated DPS-8T, was isolated from coastal sediment of Geoje island in the South Sea, South Korea, and subjected to a polyphasic study. Strain DPS-8T grew optimally at 30 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain DPS-8T joined the clade comprising the type strains of Winogradskyella species with a high bootstrap resampling value of 93.5 %. Phylogenetic trees constructed using maximum-likelihood and maximum-parsimony algorithms revealed that strain DPS-8T belonged to the genus Winogradskyella . Strain DPS-8T exhibited 94.1–96.5 % 16S rRNA gene sequence similarity to the type strains of species of the genus Winogradskyella . Strain DPS-8T contained MK-6 as the predominant menaquinone and iso-C15 : 1 G, iso-C15 : 0, iso-C17 : 0 3-OH and C16 : 1ω7c and/or iso-C15 : 0 2-OH as the major fatty acids. The major polar lipids of strain DPS-8T were phosphatidylethanolamine and two unidentified lipids. The DNA G+C content of strain DPS-8T was 34.7 mol%. Differential phenotypic properties, together with its phylogenetic distinctiveness, revealed that strain DPS-8T is separate from recognized species of the genus Winogradskyella . On the basis of the data presented, strain DPS-8T is considered to represent a novel species of the genus Winogradskyella , for which the name Winogradskyella litorisediminis sp. nov. is proposed. The type strain is DPS-8T ( = KCTC 32110T = CCUG 62215T).


2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 141-145 ◽  
Author(s):  
John A. O’Halloran ◽  
Teresa M. Barbosa ◽  
John P. Morrissey ◽  
Jonathan Kennedy ◽  
Alan D. W. Dobson ◽  
...  

A Gram-negative, motile, rod-shaped bacterial strain, designated Ad2T, was isolated from a marine sponge, Axinella dissimilis, which was collected from a semi-enclosed marine lake in Ireland. Strain Ad2T grew optimally at 24 °C, at pH 7.0 and in the presence of 3 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain Ad2T clustered with members of the genus Pseudovibrio , and showed 97.3–98.2 % sequence similarity to the type strains of recognized Pseudovibrio species. DNA–DNA relatedness values between strain Ad2T and the type strains of other Pseudovibrio species were <27 %. The DNA G+C content of strain Ad2T was 50.5 mol%. The major fatty acid was 18 : 1ω7c. Differences in phenotypic properties, together with phylogenetic and DNA–DNA hybridization analyses, indicated that strain Ad2T represented a novel species of the genus Pseudovibrio . The name Pseudovibrio axinellae sp. nov. is proposed, with Ad2T ( = DSM 24994T = NCIMB 14761T) as the type strain.


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3695-3700 ◽  
Author(s):  
Sooyeon Park ◽  
Soo-In Kim ◽  
Yong-Taek Jung ◽  
Jung-Hoon Yoon

A Gram-stain-negative, aerobic, non-spore-forming, non-flagellated and rod-shaped bacterial strain, designated DMCK3-4T, was isolated from the zone where the ocean and a freshwater spring meet at Jeju island, South Korea. Strain DMCK3-4T grew optimally at 30 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain DMCK3-4T clustered with the strains of three members of the genus Simiduia , with which it exhibited 97.0–99.0 % sequence similarity. Sequence similarities to the type strains of the other species with validly published names were less than 92.2 %. Strain DMCK3-4T contained Q-8 as the predominant ubiquinone and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C17 : 1ω8c, C16 : 0, C17 : 0 and C18 : 1ω7c as the major fatty acids. The major polar lipids of strain DMCK3-4T were phosphatidylethanolamine, phosphatidylglycerol, two unidentified glycolipids, one unidentified lipid and one unidentified aminolipid. The DNA G+C content of strain DMCK3-4T was 51.8 mol% and its mean DNA–DNA relatedness values with Simiduia agarivorans KCTC 23176T, Simiduia areninigrae KCTC 23293T and Simiduia litorea NRIC 0917T were 23–34 %, respectively. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain DMCK3-4T is distinct from other species of the genus Simiduia . On the basis of the data presented, strain DMCK3-4T is considered to represent a novel species of the genus Simiduia , for which the name Simiduia curdlanivorans sp. nov. is proposed. The type strain is DMCK3-4T ( = KCTC 42075T = CECT 8570T). An emended description of the genus Simiduia is also proposed.


Sign in / Sign up

Export Citation Format

Share Document