delphinapterus leucas
Recently Published Documents


TOTAL DOCUMENTS

585
(FIVE YEARS 87)

H-INDEX

42
(FIVE YEARS 4)

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Colin P. Gallagher ◽  
Luke Storrie ◽  
Michael B. Courtney ◽  
Kimberly L. Howland ◽  
Ellen V. Lea ◽  
...  

Abstract Background We report compelling evidence suggesting a predation event of a pop-up satellite archival tagged anadromous Dolly Varden (Salvelinus malma) by a marine mammal during summer in the Beaufort Sea based on abrupt changes in temperature and vertical movements. This observation provides insight on predator avoidance behaviour by Dolly Varden and the predator’s feeding frequency while the tag was ingested. Based on published distribution and ecology information, we presumed the predator was a beluga whale (Delphinapterus leucas). Supplemental satellite telemetry data from previously tagged Dolly Varden and beluga whales were used to determine the extent of spatial and vertical overlap between species in the area where predation occurred. Results Prior to the predation event, depths and temperatures occupied by the tagged Dolly Varden averaged 1.1 m and 3.1 °C, respectively. On July 7, 2020, depths remained shallow apart from a sudden dive to 12.5 m (16:45 UTC) followed by a precipitous increase in temperature from 4.4 to 27.1 °C (16:52 UTC) suggesting predation by an endotherm. Subsequent readings indicated the endotherm had a resting stomach temperature of 36.1 °C. Including the predation event, eight separate feeding events were inferred during the 20-h period the tag was ingested (before presumed regurgitation) based on subsequent declines in stomach temperatures (mean decline to 31.1 °C) that took an average of 24.1 min to return to resting temperature. The predator occupied mainly shallow depths (mean = 2.3 m), overlapping with tagged belugas that spent 76.9% of their time occupying waters ≤ 2.5 m when frequenting the area occupied by tagged Dolly Varden in the Canadian Beaufort Sea in July. Back-calculation based on tag drift and mean displacement by tagged belugas indicated the predation likely occurred west of the Mackenzie Delta. Conclusion Our findings provide new information on both anti-predator behaviour by, and marine predators of, Dolly Varden in the Beaufort Sea. We provide the first estimate of feeding frequency and stomach temperature recovery in a presumed wild beluga, and evidence for shallow foraging behaviour by belugas. Elucidating the likely predator and exploring the extent of overlap between Dolly Varden and beluga whales contributes towards knowledge on the trophic interactions in the Beaufort Sea.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260485
Author(s):  
Manuel Castellote ◽  
Aran Mooney ◽  
Russel Andrews ◽  
Stacy Deruiter ◽  
Wu-Jung Lee ◽  
...  

Cook Inlet, Alaska, is home to an endangered and declining population of 279 belugas (Delphinapterus leucas). Recovery efforts highlight a paucity of basic ecological knowledge, impeding the correct assessment of threats and the development of recovery actions. In particular, information on diet and foraging habitat is very limited for this population. Passive acoustic monitoring has proven to be an efficient approach to monitor beluga distribution and seasonal occurrence. Identifying acoustic foraging behavior could help address the current gap in information on diet and foraging habitat. To address this conservation challenge, eight belugas from a comparative, healthy population in Bristol Bay, Alaska, were instrumented with a multi-sensor tag (DTAG), a satellite tag, and a stomach temperature transmitter in August 2014 and May 2016. DTAG deployments provided 129.6 hours of data including foraging and social behavioral states. A total of 68 echolocation click trains ending in terminal buzzes were identified during successful prey chasing and capture, as well as during social interactions. Of these, 37 click trains were successfully processed to measure inter-click intervals (ICI) and ICI trend in their buzzing section. Terminal buzzes with short ICI (minimum ICI <8.98 ms) and consistently decreasing ICI trend (ICI increment range <1.49 ms) were exclusively associated with feeding behavior. This dual metric was applied to acoustic data from one acoustic mooring within the Cook Inlet beluga critical habitat as an example of the application of detecting feeding in long-term passive acoustic monitoring data. This approach allowed description of the relationship between beluga presence, feeding occurrence, and the timing of spawning runs by different species of anadromous fish. Results reflected a clear preference for the Susitna River delta during eulachon (Thaleichthys pacificus), Chinook (Oncorhynchus tshawytscha), pink (Oncorhynchus gorbuscha), and coho (Oncorhynchus kisutch) salmon spawning run periods, with increased feeding occurrence at the peak of the Chinook and pink salmon runs.


2021 ◽  
Vol 40 ◽  
Author(s):  
Gregory O'Corry-Crowe ◽  
Tatiana Ferrer ◽  
John J. Citta ◽  
Robert Suydam ◽  
Lori Quakenbush ◽  
...  

We investigate the recent history and stock identity of beluga whales (Delphinapterus leucas) in Kotzebue Sound in the Chukchi Sea, a region long frequented by large numbers of belugas in summer until their near disappearance in the 1980s. Wide variation in numbers since then suggests a complex recent history that hinders recovery efforts. Analysis of teeth sampled during the historical (pre-decline) era using ancient DNA (aDNA) methods found that the original Kotzebue Sound whales were differentiated for mitochondrial DNA (mtDNA) from other summering concentrations across the Pacific Arctic revealing a demographically distinct subpopulation where long-established migratory culture likely facilitated population divergence. Analysis of microsatellite (nDNA) and mtDNA markers in belugas from the contemporary (post-decline) era revealed that whales from other stocks likely visited Kotzebue Sound, including during two low ice years when relatively large numbers of whales were present. Some mtDNA lineages were found only in Kotzebue Sound, with one recorded in both the historical and contemporary eras. Exclusion tests found a number of whales in Kotzebue Sound during the contemporary era that had nDNA genotypes unlikely to arise in other contemporary stocks in the Pacific Arctic. Our findings indicate that the Kotzebue Sound belugas comprised a unique stock of which a few remnants likely still co-occur with belugas from other larger stocks. We recommend that the US government work through the co-management process to greatly reduce or eliminate the taking of belugas, especially adult females, likely to belong to the Kotzebue Sound stock, until they recover.


2021 ◽  
Vol 40 ◽  
Author(s):  
Caroline E.C. Goertz ◽  
Kathy Woodie ◽  
Brett Long ◽  
Lisa Hartman ◽  
Eric Gaglione ◽  
...  

Given the remote, rugged areas belugas typically inhabit and the low rehabilitation success rate with any cetacean, it is rare to have the opportunity to rescue a live-stranded beluga. The Alaska SeaLife Center cared for two stranded beluga calves with two different outcomes. In 2012, a neonatal male beluga calf (DL1202) stranded following intense storms in Bristol Bay. In 2017, a helicopter pilot discovered a stranded male beluga calf (DL1705) during a flight over Cook Inlet. The Alaska SeaLife Center transported both calves for rehabilitation and utilized supportive care plans based on those for other species of stranded cetaceans and care of neonatal belugas at zoological facilities. Diagnostics included complete blood counts, serum chemistries, microbial cultures, hearing tests, imaging and morphometric measurements to monitor systemic health. Treatments included in-pool flotation support; antimicrobials; gastrointestinal support; and close monitoring of respirations, urination, defecation and behaviour. After three weeks of supportive care, the Bristol Bay calf (DL1202) succumbed to sepsis secondary to a possible prematurity-related lack of passive transfer of antibodies. After seven weeks, the Cook Inlet calf (DL1705) recovered and all medications were discontinued. Unable to survive on his own, he was declared non-releasable and placed in long-term care at a zoological facility, to live with other belugas. Aspects and details from successful cases of cetacean critical care become important references especially vital for the survival of essential animals in small, endangered populations.


2021 ◽  
Vol 40 ◽  
Author(s):  
Tracy A. Romano ◽  
Laura A. Thompson ◽  
Maureen V. Driscoll ◽  
Ebru Unal ◽  
Allison D. Tuttle ◽  
...  

Aquaria that care for and maintain belugas (Delphinapterus leucas) under professional care have the opportunity to contribute to the conservation of wild belugas through research, expertise in animal care and husbandry, and engaging and educating the public about threats to the species’ health and population sustainability. In an aquarium setting, belugas can be studied under controlled conditions, with known variables that are often difficult to discern when studying wild belugas. Information on nutrition, health status and environmental parameters can be easily obtained in a controlled setting. Biological samples are collected from professionally trained whales that voluntarily participate in informative experimental paradigms. Research studies in aquaria seek to contribute to the recovery and management of endangered beluga populations, such as those in Cook Inlet. Mystic Aquarium’s efforts are presented as a case study. Key research priorities address action items in the Cook Inlet Beluga Recovery Plan and include: (1) understanding the beluga immune system, microbial communities, pathogens and disease; (2) development of non-invasive methods for assessing reproductive status, body condition and health in wild whales; (3) investigation of diving physiology and the impact of altered dive patterns on health; (4) understanding reproduction, a key to recovery and sustainability of wild populations; (5) development and testing of new technologies for tracking and monitoring whales and habitat use; and (6) understanding how noise affects beluga hearing, behaviour and physiology. Expertise in animal handling, behaviour and nutrition contribute to rescue, rehabilitation and capture release efforts. Moreover, ‘students’ of all ages have the opportunity to be engaged, educated and contribute to beluga conservation.


2021 ◽  
Vol 40 ◽  
Author(s):  
Kaitlin Breton-Honeyman ◽  
Henry P. Huntington ◽  
Mark Basterfield ◽  
Kiyo Campbell ◽  
Jason Dicker ◽  
...  

Beluga whales (Delphinapterus leucas) are an integral part of many Arctic Indigenous cultures and contribute to food security for communities from Greenland, across northern Canada and Alaska to Chukotka, Russia. Although the harvesting and stewardship practices of Indigenous peoples vary among regions and have shifted and adapted over time, central principles of respect for beluga and sharing of the harvest have remained steadfast. In addition to intra-community cooperation to harvest, process and use beluga whales, rapid environmental change in the Arctic has underscored the need for inter-regional communication as well as collaboration with scientists and managers to sustain beluga populations and their cultural and nutritional roles in Arctic communities. Our paper, written by the overlapping categories of researchers, hunters, and managers, first provides an overview of beluga hunting and collaborative research in seven regions of the Arctic (Greenland; Nunatsiavut, Nunavik, Nunavut, and the Inuvialuit Settlement Region, Canada; Alaska; and Chukotka). Then we present a more detailed case study of collaboration, examining a recent research and management project that utilizes co-production of knowledge to address the conservation of a depleted population of beluga in Nunavik, Canada. We conclude that sustaining traditional values, establishing collaborative management efforts, the equitable inclusion of Indigenous Knowledge, and respectful and meaningful collaborations among hunters, researchers and managers are essential to sustaining healthy beluga populations and the peoples who live with and depend upon them in a time of rapid social and environmental change.


2021 ◽  
Vol 40 ◽  
Author(s):  
Kathryn J. Frost ◽  
Tom Gray ◽  
Willie Goodwin, Sr. ◽  
Roswell Schaeffer ◽  
Robert Suydam

The Alaska Beluga Whale Committe (ABWC) was formed in 1988 to conserve beluga whales (Delphinapterus leucas) and manage beluga subsistence hunting in western and northern Alaska in cooperation with the National Marine Fisheries Service (NMFS). When the ABWC was formed, there was no consistently funded research or management programme for belugas in Alaska, and co-management was a new concept. The ABWC brought together representatives from beluga hunting communities; federal, state, tribal and local governments; and beluga researchers to develop and implement a programme to manage belugas. With funding from NMFS and others, the ABWC has collected data necessary for informed management decisions including the following: harvest data; aerial surveys of belugas in Bristol Bay and the eastern Bering and Chukchi seas; beluga tracking studies, including training hunters to attach transmitters; a pioneering genetics study of beluga stock identity that has facilitated collection of >2000 beluga skin samples; and a genetics-based mark–recapture study to estimate beluga abundance in Bristol Bay and validate aerial survey estimates. The ABWC is currently engaged in regional management planning in Kotzebue Sound and the eastern Bering Sea. It produces results that are scientifically valid, locally accepted and cost-effective and is an example of what can be achieved when Native hunters, scientists and managing agencies respect and listen to one another and work together. However, the current NMFS co-management funding process has fundamentally altered the relationship between NMFS and ABWC, with NMFS now acting more like a funding agency than a partner.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marie J. Zahn ◽  
Shannon Rankin ◽  
Jennifer L. K. McCullough ◽  
Jens C. Koblitz ◽  
Frederick Archer ◽  
...  

AbstractBelugas (Delphinapterus leucas) and narwhals (Monodon monoceros) are highly social Arctic toothed whales with large vocal repertoires and similar acoustic profiles. Passive Acoustic Monitoring (PAM) that uses multiple hydrophones over large spatiotemporal scales has been a primary method to study their populations, particularly in response to rapid climate change and increasing underwater noise. This study marks the first acoustic comparison between wild belugas and narwhals from the same location and reveals that they can be acoustically differentiated and classified solely by echolocation clicks. Acoustic recordings were made in the pack ice of Baffin Bay, West Greenland, during 2013. Multivariate analyses and Random Forests classification models were applied to eighty-one single-species acoustic events comprised of numerous echolocation clicks. Results demonstrate a significant difference between species’ acoustic parameters where beluga echolocation was distinguished by higher frequency content, evidenced by higher peak frequencies, center frequencies, and frequency minimums and maximums. Spectral peaks, troughs, and center frequencies for beluga clicks were generally > 60 kHz and narwhal clicks < 60 kHz with overlap between 40–60 kHz. Classification model predictive performance was strong with an overall correct classification rate of 97.5% for the best model. The most important predictors for species assignment were defined by peaks and notches in frequency spectra. Our results provide strong support for the use of echolocation in PAM efforts to differentiate belugas and narwhals acoustically.


Sign in / Sign up

Export Citation Format

Share Document