scholarly journals Methanobacterium aggregans sp. nov., a hydrogenotrophic methanogenic archaeon isolated from an anaerobic digester

2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1975-1980 ◽  
Author(s):  
Tobias Kern ◽  
Mary Linge ◽  
Michael Rother

A novel, strictly anaerobic, hydrogenotrophic methanogen, strain E09F.3T, was isolated from a commercial biogas plant in Germany. Cells of E09F.3T were Gram-stain-negative, non-motile, slightly curved rods, long chains of which formed large aggregates consisting of intertwined bundles of chains. Cells utilized H2+CO2 and, to a lesser extent, formate as substrates for growth and methanogenesis. The optimal growth temperature was around 40 °C; maximum growth rate was obtained at pH around 7.0 with approximately 6.8 mM NaCl. The DNA G+C content of strain E09F.3T was 39.1 mol%. Phylogenetic analyses based on 16S rRNA and mcrA gene sequences placed strain E09F.3T within the genus Methanobacterium. On the basis of 16S rRNA gene sequence similarity, strain E09F.3T was closely related to Methanobacterium congolense CT but morphological, physiological and genomic characteristics indicated that strain E09F.3T represents a novel species. The name Methanobacterium aggregans sp. nov. is proposed for this novel species, with strain E09F.3T ( = DSM 29428T = JCM 30569T) as the type strain.

2007 ◽  
Vol 57 (1) ◽  
pp. 141-145 ◽  
Author(s):  
Zhe-Xue Quan ◽  
Kwang Kyu Kim ◽  
Myung-Kyum Kim ◽  
Long Jin ◽  
Sung-Taik Lee

A Gram-negative, non-spore-forming, yellow-pigmented bacterium, strain N4T, was isolated from a nickel-complexed cyanide-degrading bioreactor and subjected to a polyphasic taxonomic study. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain N4T is affiliated to the genus Chryseobacterium of the family Flavobacteriaceae. The levels of 16S rRNA gene sequence similarity between strain N4T and the type strains of all known Chryseobacterium species were 93.2–95.8 %, suggesting that strain N4T represents a novel species within the genus Chryseobacterium. The strain contained iso-C15 : 0 and summed feature 4 as the major fatty acids and menaquinone MK-6 as the predominant respiratory quinone. The G+C content of the genomic DNA was 38.2 mol%. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain N4T represents a novel species of the genus Chryseobacterium, for which the name Chryseobacterium caeni sp. nov. is proposed. The type strain is N4T (=KCTC 12506T=CCBAU 10201T=DSM 17710T).


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4526-4532 ◽  
Author(s):  
Shaoxing Chen ◽  
Hong-Can Liu ◽  
Dahe Zhao ◽  
Jian Yang ◽  
Jian Zhou ◽  
...  

Two halophilic archaeal strains, Q85T and Q86, were isolated from a subterranean salt mine in Yunnan, China. Cells were rod-shaped, Gram-stain-negative and motile. Colonies were red, smooth, convex and round (1.0–2.0 mm in diameter). The orthologous 16S rRNA and rpoB′ gene sequences of these two strains were almost identical (99.5 and 99.7 % similarities). Their closest relatives were Halorubrum kocurii BG-1T (98.0–98.1 % 16S rRNA gene sequence similarity), Halorubrum aidingense 31-hongT (97.6–97.7 %) and Halorubrum lipolyticum 9-3T (97.5–97.6 %). The level of DNA–DNA relatedness between strains Q85T and Q86 was 90 %, while that between Q85T and other related Halorubrum strains was less than 30 % (29 % for H. kocurii BG-1T, 25 % for H. aidingense 31-hongT and 22 % for H. lipolyticum 9-3T). Optimal growth of the two novel strains was observed with 20 % (w/v) NaCl and at 42–45 °C under aerobic conditions, with a slight difference in optimum Mg2+ concentration (0.7 M for Q85T, 0.5 M for Q86) and a notable difference in optimum pH (pH 7.5 for Q85T, pH 6.6 for Q86). Anaerobic growth occurred with nitrate, but not with l-arginine or DMSO. The major polar lipids of the two strains were identical, including phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and sulfated diglycosyl diether, which are the major lipids of the genus Halorubrum. The G+C contents of strains Q85T and Q86 were 66.3 and 66.8 %, respectively. Based on the phenotypic, chemotaxonomic and phylogenetic properties of strains Q85T and Q86, a novel species, Halorubrum yunnanense sp. nov., is proposed. The type strain is Q85T ( = CGMCC 1.15057T = JCM 30665T).


2021 ◽  
Author(s):  
Wen-Ming Chen ◽  
Ting-Hsuan Chang ◽  
Der-Shyan Sheu ◽  
Li-Cheng Jheng ◽  
Shih-Yi Sheu

Abstract Strain CCP-1T, isolated from a freshwater pond in Taiwan, is characterized using a polyphasic taxonomy approach. Cells of strain CCP-1T are Gram-stain-negative, aerobic, non-motile, rod-shaped and form dark red colored colonies. Growth occurs at 20–40 oC, at pH 6.5-9 and with 0-0.5% NaCl. Strain CCP-1T contains bacteriochlorophyll a, and shows optimum growth under anaerobic condition by photoheterotrophy, but not by photoautotrophy. 16S rRNA gene sequence similarity indicates that strain CCP-1T is closely related to species within the genus Rhodobacter (93.9–96.2% sequence similarity), Haematobacter (96.3%) and Xinfangfangia (95.5–96.2%). Phylogenetic analyses based on 16S rRNA gene sequences and based on up-to-date bacterial core gene set (92 protein clusters) reveal that strain CCP-1T is affiliated with species in the genus Rhodobacter. The average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization identity between strain CCP-1T and Rhodobacter species are 71.3–76.3%, 70.4–77.9% and 21.4–23.2%, respectively, supporting that strain CCP-1T is a novel species of the genus Rhodobacter. The DNA G + C content is 66.2%. The predominant fatty acid is C18:1ω7c and the major isoprenoid quinone is Q-10. The polar lipids have phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, two uncharacterized aminophospholipids and two uncharacterized phospholipids. On the basis of phenotypic and genotypic properties and phylogenetic inference, strain CCP-1T should represent a novel species of the genus Rhodobacter, for which the name Rhodobacter ruber sp. nov. is proposed. The type strain is CCP-1T (= BCRC 81189T = LMG 31335T).


2004 ◽  
Vol 54 (5) ◽  
pp. 1465-1468 ◽  
Author(s):  
Hyunyoung Jeong ◽  
Hana Yi ◽  
Yuji Sekiguchi ◽  
Mizuho Muramatsu ◽  
Yoichi Kamagata ◽  
...  

A strictly anaerobic, mesophilic, endospore-forming bacterium, designated strain HY-35-12T, was isolated from a soil sample in Jeju, Korea. Cells of this isolate were Gram-positive, motile rods that formed oval to spherical terminal spores. Strain HY-35-12T grew optimally at 30 °C, pH 7·0 and 0–0·5 % (w/v) NaCl. The isolate produced pyruvate, lactate, acetate, formate and hydrogen as fermentation end products from glucose. The G+C content of DNA of the isolate was 41 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the organism formed a monophyletic clade with Clostridium xylanovorans and Clostridium aminovalericum in cluster XIVa of the genus Clostridium. The closest phylogenetic neighbour was C. xylanovorans, with 96·65 % 16S rRNA gene sequence similarity. Several physiological and chemotaxonomic properties were identified that enable strain HY-35-12T to be distinguished from phylogenetically related clostridia. On the basis of polyphasic characteristics, it is proposed that strain HY-35-12T (=IMSNU 40003T=KCTC 5026T=DSM 15929T) represents a novel species, Clostridium jejuense sp. nov.


2006 ◽  
Vol 56 (10) ◽  
pp. 2437-2441 ◽  
Author(s):  
Sylvia H. Duncan ◽  
Rustam I. Aminov ◽  
Karen P. Scott ◽  
Petra Louis ◽  
Thaddeus B. Stanton ◽  
...  

Seven recently cultured bacterial isolates, although similar in their 16S rRNA gene sequences to Roseburia intestinalis L1-82T (DSM 14610T), were not sufficiently related for inclusion within existing species, forming three separate clusters in a 16S rRNA gene phylogenetic tree. The isolates, which were obtained from human stools, were Gram-variable or Gram-negative, strictly anaerobic, slightly curved rods; cells from all strains measured approximately 0.5×1.5–5.0 μm and were motile. Two strains belonging to one cluster (A2-181 and A2-183T) were the only strains that were able to grow on glycerol and that failed to grow on any of the complex substrates tested (inulin, xylan and amylopectin). Strains belonging to a second cluster (represented by M6/1 and M72/1T) differed from the other isolates in their ability to grow on sorbitol. Isolates belonging to a third cluster (L1-83 and A2-194T) were the only strains that failed to grow on xylose and that gave good growth on inulin (strains M6/1 and M72/1T gave weak growth). All strains were net acetate utilizers. The DNA G+C contents of representative Roseburia strains A2-183T, A2-194T, M72/1T and R. intestinalis L1-82T were 47.4, 41.4, 42.0 and 42.6 mol%, respectively. Based on 16S rRNA gene sequence similarity, three novel Roseburia species are proposed, with the names Roseburia hominis sp. nov. (type strain A2-183T=DSM 16839T=NCIMB 14029T), Roseburia inulinivorans sp. nov. (type strain A2-194T=DSM 16841T=NCIMB 14030T) and Roseburia faecis sp. nov. (type strain M72/1T=DSM 16840T=NCIMB 14031T).


2006 ◽  
Vol 56 (8) ◽  
pp. 1893-1898 ◽  
Author(s):  
Jae-Chan Lee ◽  
Jee-Min Lim ◽  
Dong-Jin Park ◽  
Che Ok Jeon ◽  
Wen-Jun Li ◽  
...  

A halotolerant, round-endospore-forming, aerobic, Gram-positive bacterium, designated BH724T, was isolated from a solar saltern at Taean in Korea. Cells of this strain were rod-shaped and found to be non-motile. Strain BH724T grew at salinities of 0–10 % (w/v) NaCl with an optimum of 3 % (w/v) NaCl and at temperatures of 15–50 °C with an optimum of 40 °C. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain BH724T belonged to the genus Bacillus and that Bacillus aquimaris TF-12T, Bacillus marisflavi TF-11T and Bacillus vietnamensis JCM 11124T were its closest neighbours, sharing 97.3, 97.2 and 97.0 % 16S rRNA gene sequence similarity, respectively. The genomic DNA G+C content was 39 mol% and the predominant menaquinone was MK-7. Its major cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0, iso-C16 : 0 and iso-C14 : 0. The peptidoglycan type was A1α, linked directly through l-lysine. On the basis of morphological, chemotaxonomic, physiological and phylogenetic properties, strain BH724T represents a novel species of the genus Bacillus, for which the name Bacillus seohaeanensis sp. nov. is proposed. The type strain is BH724T (=KCTC 3913T=DSM 16464T).


2014 ◽  
Vol 64 (Pt_5) ◽  
pp. 1617-1621 ◽  
Author(s):  
Shungui Zhou ◽  
Jia Tang ◽  
Dongxing Qin ◽  
Qin Lu ◽  
Guiqin Yang

A thermophilic bacterium, designated DX-1T, was isolated from the anode biofilm of a microbial fuel cell (MFC). Cells of strain DX-1T were oxidase-positive, catalase-positive and Gram-staining-negative. The strain was found to be rod-shaped and non-motile and to produce subterminal spores. The strain was able to grow with NaCl at concentrations ranging from 0 to 6 %, at temperatures of 25–60 °C (optimum 55 °C) and pH 6.0–8.0 (optimum pH 7.0). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain DX-1T formed a cluster with Ureibacillus thermosphaericus DSM 10633T (96.9 % 16S rRNA sequence similarity), Ureibacillus composti DSM 17951T (95.8 %), Ureibacillus thermophilus DSM 17952T (95.7 %) and Ureibacillus terrenus DSM 12654T (95.3 %). The G+C content of the genomic DNA was 40.4 mol%. The major quinone was MK-7, the peptidoglycan type was l-Lys←d-Asp, and the major cellular fatty acids (>5 %) were iso-C16 : 0 and iso-C14 : 0. The polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol and phospholipids of unknown composition. Based on phenotypic characteristics, chemotaxonomic features and results of phylogenetic analyses, the strain was determined to represent a distinct novel species of the genus Ureibacillus , and the name proposed for the novel species is Ureibacillus defluvii sp. nov., with type strain DX-1T ( = CGMCC 1.12358T = KCTC 33127T).


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4595-4600 ◽  
Author(s):  
María José León ◽  
Fernando Martínez-Checa ◽  
Antonio Ventosa ◽  
Cristina Sánchez-Porro

Four bacterial strains, SN-14T, SN-4, M6-46 and M6-58B, were isolated from water of ponds of two salterns located in Huelva (Spain). They were Gram-stain-negative, aerobic and slightly curved rods. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the four strains belong to the genus Idiomarina, being related most closely to Idiomarina fontislapidosi F23T (98.4–98.0% sequence similarity), Idiomarina seosinensis CL-SP19T (98.3–98.0%), Idiomarina piscisalsi TPS4-2T (97.9–97.4%), Idiomarina baltica OS145T (97.5–97.4%) and Idiomarina zobellii KMM 231T (97.6–97.0%). The level of similarity with the type species of the genus, Idiomarina abyssalis KMM 227T, was 97.2–96.7%. The novel strains exhibited optimal growth at 5–10% (w/v) total salts, pH 7 and 37 °C. The major fatty acids of strain SN-14T were iso-C15 : 0, iso-C17 : 0, C18 : 1ω7c/C18 : 1ω6c, C16 : 0 and iso-C17 : 1ω9c/C16 : 0 10-methyl. The DNA G+C content range was 47.6–50.8 mol%. The level of DNA–DNA relatedness between strain SN-14T and I. fontislapidosi F23T was 13%, while those between strain SN-14T and the other three new isolates were between 77 and 99%. These data demonstrated that the four isolates constitute a novel species of the genus Idiomarina. Based on the phylogenetic, genotypic, phenotypic and chemotaxonomic data, the four strains represent a novel species of the genus Idiomarina, for which the name Idiomarina aquatica sp. nov. is proposed. The type strain is SN-14T ( = CCM 8471T = CECT 8360T = LMG 27613T).


2021 ◽  
Author(s):  
Soohyun Maeng ◽  
Yuna Park ◽  
Tuvshinzaya Damdintogtokh ◽  
Hyejin Oh ◽  
Minji Bang ◽  
...  

Abstract Gram-stain-negative, aerobic, non-flagellated strains 172403-2T and BT310T were isolated from the soil collected in Pyeongchang city and Uijeongbu city, Korea. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strains 172403-2T and BT310T formed a distinct lineage within the family Hymenobacteraceae (order Chitinophagales, class Chitinophagia) and were most closely related to members of the genus Pontibacter, Pontibacter chitinilyticus 17gy-14T (95.7%), and Pontibacter populi HLY7-15T (97.1% 16S rRNA gene sequence similarity) respectively. The optimal growth of strains 172403-2T and BT310T occurred at pH 7.0, in the absence of NaCl, and 25°C and 30°C, respectively. The predominant cellular fatty acids were iso-C15:0 and summed feature 4 (iso-C17:1 I / anteiso-C17:1 B). The major respiratory quinone of the two strains was MK-7. The major polar lipid of the two strains was phosphatidylethanolamine. Biochemical, chemotaxonomic and phylogenetic analyses indicated that strains 172403-2T and BT310T represent novel bacterial species within the genus Pontibacter, for which the names Pontibacter rubellus and Pontibacter situs are proposed. The type strains of Pontibacter rubellus and Pontibacter situs are 172403-2T and BT310T, respectively.


2013 ◽  
Vol 63 (Pt_6) ◽  
pp. 2290-2295 ◽  
Author(s):  
Srinivasan Krishnamurthi ◽  
Stefan Spring ◽  
Pinnaka Anil Kumar ◽  
Shanmugam Mayilraj ◽  
Hans-Peter Klenk ◽  
...  

A novel sulfate-reducing, strictly anaerobic and endospore-forming bacterium, designated strain A5LFS102T, was isolated from a subsurface landfill sample. The strain was characterized using a polyphasic approach. Optimal growth was observed at 37 °C and pH 7.5 with sulfate as an electron acceptor. Sulfite and thiosulfate were utilized as electron acceptors. The respiratory isoprenoid quinone was menaquinone MK-7. 16S rRNA gene sequence analysis assigned strain A5LFS102T to the genus Desulfotomaculum . Both 16S rRNA and dissimilatory sulfate reductase (dsr) genes were compared with those of representative members of the genus Desulfotomaculum . Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain A5LFS102T was closely related to Desulfotomaculum aeronauticum DSM 10349T (94.6 % sequence similarity). The G+C content of the DNA was 45.4 mol%. The total cellular fatty acid profile was dominated by C16 fatty acids. These phenotypic and genotypic data showed that strain A5LFS102T should be recognized as representative of a novel species of the genus Desulfotomaculum , for which the name Desulfotomaculum defluvii sp. nov. is proposed. The type strain is A5LFS102T ( = DSM 23699T = JCM 14036T = MTCC 7767T).


Sign in / Sign up

Export Citation Format

Share Document