Desulfotomaculum defluvii sp. nov., a sulfate-reducing bacterium isolated from the subsurface environment of a landfill

2013 ◽  
Vol 63 (Pt_6) ◽  
pp. 2290-2295 ◽  
Author(s):  
Srinivasan Krishnamurthi ◽  
Stefan Spring ◽  
Pinnaka Anil Kumar ◽  
Shanmugam Mayilraj ◽  
Hans-Peter Klenk ◽  
...  

A novel sulfate-reducing, strictly anaerobic and endospore-forming bacterium, designated strain A5LFS102T, was isolated from a subsurface landfill sample. The strain was characterized using a polyphasic approach. Optimal growth was observed at 37 °C and pH 7.5 with sulfate as an electron acceptor. Sulfite and thiosulfate were utilized as electron acceptors. The respiratory isoprenoid quinone was menaquinone MK-7. 16S rRNA gene sequence analysis assigned strain A5LFS102T to the genus Desulfotomaculum . Both 16S rRNA and dissimilatory sulfate reductase (dsr) genes were compared with those of representative members of the genus Desulfotomaculum . Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain A5LFS102T was closely related to Desulfotomaculum aeronauticum DSM 10349T (94.6 % sequence similarity). The G+C content of the DNA was 45.4 mol%. The total cellular fatty acid profile was dominated by C16 fatty acids. These phenotypic and genotypic data showed that strain A5LFS102T should be recognized as representative of a novel species of the genus Desulfotomaculum , for which the name Desulfotomaculum defluvii sp. nov. is proposed. The type strain is A5LFS102T ( = DSM 23699T = JCM 14036T = MTCC 7767T).

2014 ◽  
Vol 64 (Pt_8) ◽  
pp. 2907-2914 ◽  
Author(s):  
Thuy T. An ◽  
Flynn W. Picardal

A novel, strictly anaerobic, sulfate-reducing bacterium, designated strain SCBMT, was isolated from water extracted from a coal bed in Indiana, USA. The isolate was characterized by a polyphasic taxonomic approach that included phenotypic and genotypic characterizations. Cells of strain SCBMT were vibrio-shaped, polarly flagellated, Gram-negative, motile, oxidase-negative and weakly catalase-positive. Growth of strain SCBMT was observed at NaCl concentrations ranging from 0 to 300 mM. However, no growth was observed when 1 M or more NaCl was present. Growth was observed at 16–37 °C, with optimal growth at 30 °C. The optimum pH for growth was 7, although growth was observed from pH 6.5 to 8. The doubling time under optimal growth conditions (30 °C, pH 7, 2.5 mM benzoate, 14 mM sulfate) was 2.7 days. Bicarbonate, HEPES, PIPES and MES were effective buffers for growth of strain SCBMT, but citrate inhibited growth. When sulfate was provided as the electron acceptor, strain SCBMT grew autotrophically with hydrogen as the electron donor and heterotrophically on benzoate, formate, acetate, pyruvate, butyrate, fumarate, succinate and palmitate. None of the substrates tested supported fermentative growth. Thiosulfate and sulfate were used as electron acceptors coupled to benzoate oxidation, but sulfite, elemental sulfur, DMSO, anthraquinone 2,6-disulfonate, nitrate, nitrite, ferric citrate, hydrous iron oxide and oxygen were not. The G+C content of genomic DNA was 62.5 mol%. The major cellular fatty acids were anteiso-C15 : 0 and C18 : 1ω7c. Phylogenetic analysis based on 16S rRNA gene sequencing placed strain SCBMT into a distinct lineage within the class Deltaproteobacteria . The closest, cultivated phylogenetic relative of strain SCBMT was Desulfarculus baarsii DSM 2075T, with only 91.7 % 16S rRNA gene sequence identity. On the basis of phenotypic and genotypic analyses, strain SCBMT represents a novel genus and species of sulfate-reducing bacteria, for which the name Desulfocarbo indianensis gen. nov., sp. nov. is proposed. The type strain of Desulfocarbo indianensis is SCBMT ( = DSM 28127T = JCM 19826T). Desulfocarbo is the second genus of the order Desulfarculales .


2012 ◽  
Vol 62 (Pt_12) ◽  
pp. 2851-2857 ◽  
Author(s):  
Jina Lee ◽  
Tae Woong Whon ◽  
Na-Ri Shin ◽  
Seong Woon Roh ◽  
Jandi Kim ◽  
...  

A slightly halophilic, Gram-negative, strictly aerobic, non-motile rod, designated TW15T, was isolated from an ark clam in South Korea. Growth occurred at 10–37 °C, with 1–5 % (w/v) NaCl and at pH 7.0–10.0. Optimal growth occurred at 25–30 °C, with 2 % (w/v) NaCl and at pH 8.0. Strain TW15T exhibited both oxidase and catalase activities. The major fatty acids of strain TW15T were summed feature 8 (consisting of C18 : 1ω7c and/or C18 : 1ω6c) and 11-methyl C18 : 1ω7c. The predominant isoprenoid quinone was ubiquinone-10 (Q-10). The polar lipids of strain TW15T comprised phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified phospholipid, an unidentified aminolipid and five unidentified lipids. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain TW15T was most closely related to Ruegeria lacuscaerulensis DSM 11314T (98.0 % 16S rRNA gene sequence similarity). DNA–DNA relatedness with closely related strains was <52±3 %. The DNA G+C content was 55.7 mol%. On the basis of phenotypic, genotypic and phylogenetic data, strain TW15T represents a novel species of the genus Ruegeria , for which the name Ruegeria conchae sp. nov. is proposed. The type strain is TW15T ( = KACC 15115T  = JCM 17315T).


2013 ◽  
Vol 63 (Pt_9) ◽  
pp. 3175-3179 ◽  
Author(s):  
Kyung June Yim ◽  
Myunglip Lee ◽  
Hae-Won Lee ◽  
Kil-Nam Kim ◽  
Hye-Mi Yang ◽  
...  

A Gram-stain-negative bacterium, designated strain CBA4601T, was isolated from a seawater sample obtained off the coast of Jeju Island, Korea. The organism grew in the presence of 0–4 % (w/v) NaCl and at 20–35 °C and pH 7.0–9.0, with optimal growth in 2 % NaCl, and at 25 °C and pH 8.0. Phylogenetic trees based on 16S rRNA gene sequences showed that strain CBA4601T was related to the genus Ferrimonas within the class Gammaproteobacteria . 16S rRNA gene sequence similarity between strain CBA4601T and Ferrimonas marina A4D-4T, the most closely related species, was 96.9 %. The G+C content of the genomic DNA from strain CBA4601T was 54.2 mol%, and the isoprenoid quinones menaquinone 7 (MK-7), ubiquinone 7 (Q-7) and ubiquinone 8 (Q-8) were detected. The major fatty acids were C17 : 1ω8c, C18 : 1ω9c and C16 : 0, and the major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and an unidentified ninhydrin-positive phospholipid. On the basis of this taxonomic study using a polyphasic approach, strain CBA4601T represents a novel species of the genus Ferrimonas , for which the name Ferrimonas pelagia sp. nov. is proposed. The type strain is CBA4601T ( = KACC 16695T = KCTC 32029T = JCM 18401T).


Author(s):  
Miho Watanabe ◽  
Hisaya Kojima ◽  
Kunihiro Okano ◽  
Manabu Fukui

A novel strictly anaerobic chemoorganotrophic bacterium, designated Mahy22T, was isolated from sulfidic bottom water of a shallow brackish meromictic lake in Japan. Cells of the strain were Gram-stain-negative, non-motile and coccoid in shape with diameters of about 600–800 nm. The temperature range for growth was 15–37 °C, with optimum growth at 30–32 °C. The pH range for growth was pH 6.2–8.9, with optimum growth at pH 7.2–7.4. The strain grew with NaCl concentrations of 5% or below (optimum, 2–3%). Growth of the strain was enhanced by the addition of thiosulfate. The major cellular fatty acids were C16:0 and anteiso-C15:0. Respiratory quinones were not detected. The complete genome sequence of strain Mahy22T possessed a 1 885 846 bp circular chromosome and a 12 782 bp circular genetic element. The G+C content of the genome sequence was 30.1 mol%. Phylogenetic analysis based on the 16S rRNA gene revealed that the novel strain belonged to the family Acholeplasmataceae , class Mollicutes . The closest relative of strain Mahy22T with a validly published name was Acholeplasma palmae J233T with a 16S rRNA gene sequence similarity of 90.5%. Based on the results of polyphasic analysis, the name Mariniplasma anaerobium gen. nov., sp. nov. is proposed to accommodate strain Mahy22T, along with reclassification of some Acholeplasma species into Alteracholeplasma gen. nov., Haploplasma gen. nov. and Paracholeplasma gen. nov.


2012 ◽  
Vol 62 (Pt_8) ◽  
pp. 1850-1856 ◽  
Author(s):  
Herbert Seiler ◽  
Anne Bleicher ◽  
Hans-Jürgen Busse ◽  
Josef Hüfner ◽  
Siegfried Scherer

A novel halophilic, Gram-reaction-negative, strictly aerobic, non-motile, rod-shaped and oxidase- and catalase-positive bacterial strain, designated WCC 4520T, was isolated from a semi-hard, Raclette-type cheese. The colonies were yellow–orange; flexirubin-type pigments were not found. The strain hydrolysed gelatin, hippurate, tyrosine and Tweens 20 and 80. Optimal growth was observed with 6–8 % (w/v) NaCl, at pH 7–8 and at 27–30 °C. The genomic DNA G+C content was 33.6 mol%. In phylogenetic analysis based on 16S rRNA gene sequences, strain WCC 4520T appeared to be a member of the family Flavobacteriaceae and the closest phylogenetic neighbours were identified as Psychroflexus gondwanensis DSM 5423T (94.0 % 16S rRNA gene sequence similarity) and Psychroflexus salinarum CCUG 56752T (94.0 %). The predominant cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0, iso-C15 : 1 G and iso-C17 : 0 3-OH. The only detected quinone was MK-6 and the major polar lipids were phosphatidylethanolamine, an unidentified aminolipid and an unidentified polar lipid. Minor polar lipids and traces of polyamines were also detected. On the basis of the data presented, strain WCC 4520T represents a novel species of the genus Psychroflexus , for which the name Psychroflexus halocasei sp. nov. is proposed. The type strain is WCC 4520T ( = LMG 25857T = CCUG 59705T).


2012 ◽  
Vol 62 (Pt_7) ◽  
pp. 1552-1557 ◽  
Author(s):  
Na-Ri Shin ◽  
Tae Woong Whon ◽  
Seong Woon Roh ◽  
Min-Soo Kim ◽  
Young-Ok Kim ◽  
...  

Two strains, designated TW92T and TW93, were isolated from marine sediment collected from the south coast of Korea. Cells of both strains were Gram-staining-negative, coccus-shaped, aerobic, motile and catalase- and oxidase-positive. Strain TW92T grew optimally in the presence of 2 % (w/v) NaCl (range 1–5 %) while strain TW93 grew optimally in the presence of 1 % (w/v) NaCl (range 0–12 %), and both strains had an optimal growth temperature of 30 °C (range 4–37 °C). Strains TW92T and TW93 had the same optimum pH (pH 7), but differed in their ability to grow at pH 10. Phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strains TW92T and TW93 were most closely related to Oceanisphaera donghaensis BL1T, with 98.8 % and 98.7 % similarity, respectively. Pairwise similarity between the 16S rRNA gene sequences of strains TW92T and TW93 was 99.9 %. The major fatty acids of both strains were summed features 3 (comprising C16 : 1ω7c/iso-C15 2-OH), C16 : 0 and C18 : 1ω7c. Both strains possessed the ubiquinone Q-8 as the predominant respiratory quinone and phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol as the polar lipids. The genomic DNA G+C contents of strains TW92T and TW93 were 58.5 and 59.6 mol%, respectively. Genomic relatedness values based on DNA–DNA hybridization of strains TW92T and TW93 with related species were below 47 % and 31 %, respectively. DNA–DNA hybridization values between strains TW92T and TW93 were above 85 %. On the basis of a taxonomic study using polyphasic analysis, it is proposed that the two isolates represent a novel species, Oceanisphaera sediminis sp. nov., with strain TW92T ( = KACC 15117T = JCM 17329T) as the type strain and strain TW93 ( = KACC 15118 = JCM 17330) as an additional strain.


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 959-964 ◽  
Author(s):  
Martin Könneke ◽  
Jan Kuever ◽  
Alexander Galushko ◽  
Bo Barker Jørgensen

A sulfate-reducing bacterium, designated JHA1T, was isolated from a permanently cold marine sediment sampled in an Artic fjord on the north-west coast of Svalbard. The isolate was originally enriched at 4 °C in a highly diluted liquid culture amended with hydrogen and sulfate. Strain JHA1T was a psychrophile, growing fastest between 14 and 16 °C and not growing above 20 °C. Fastest growth was found at neutral pH (pH 7.2–7.4) and at marine concentrations of NaCl (20–30 g l−1). Phylogenetic analysis of 16S rRNA gene sequences revealed that strain JHA1T was a member of the family Desulfobacteraceae in the Deltaproteobacteria . The isolate shared 99 % 16S rRNA gene sequence similarity with an environmental sequence obtained from permanently cold Antarctic sediment. The closest recognized relatives were Desulfobacula phenolica DSM 3384T and Desulfobacula toluolica DSM 7467T (both <95 % sequence similarity). In contrast to its closest phylogenetic relatives, strain JHA1T grew chemolithoautotrophically with hydrogen as an electron donor. CO dehydrogenase activity indicated the operation of the reductive acetyl-CoA pathway for inorganic carbon assimilation. Beside differences in physiology and morphology, strain JHA1T could be distinguished chemotaxonomically from the genus Desulfobacula by the absence of the cellular fatty acid C16 : 0 10-methyl. Phylogenetic differentiation from other genera was further supported by DsrAB and AprBA sequence analysis. Based on the described phylogenetic and phenotypic differences between strain JHA1T and its closest relatives, the establishment of a novel genus and a novel species, Desulfoconvexum algidum gen. nov., sp. nov. is proposed. The type strain is JHA1T ( = DSM 21856T  = JCM 16085T).


2020 ◽  
Vol 70 (11) ◽  
pp. 5899-5910 ◽  
Author(s):  
Shih-Yi Sheu ◽  
Che-Chia Yang ◽  
Der-Shyan Sheu ◽  
Jyh-Ming Tsai ◽  
Wen-Ming Chen

A novel bacterial strain, designated CSW-10T, isolated from a freshwater pond in Taiwan, was characterized using a polyphasic taxonomic approach. Cells were Gram-stain-negative, aerobic, non-motile, rod-shaped and formed yellow-coloured colonies. Optimal growth occurred at 30 °C, pH 7, and in the absence of NaCl. Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of 92 protein clusters indicated that strain CSW-10T formed a phylogenetic lineage in the genus Sphingomonas . The 16S rRNA gene sequence similarity indicated that strain CSW-10T was most closely related to Sphingomonas fonticola TNR-2T (97.6%). Strain CSW-10T showed 69.8–70.7% average nucleotide identity and 19.0–23.0% digital DNA–DNA hybridization identity with the strains of other related Sphingomonas species. The major fatty acids of strain CSW-10T were summed feature 8 (C18:1 ω7c and/or C18:1 ω6c) and C17:1 ω6c. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidyldimethylethanolamine, phosphatidylcholine, one uncharacterized sphingoglycolipid, five uncharacterized aminophospholipids, one uncharacterized phospholipid and one uncharacterized lipid. The predominant polyamines were homospermidine and spermidine. The major isoprenoid quinone was Q-10. Genomic DNA G+C content of strain CSW-10T was 62.0 mol%. On the basis of phenotypic and genotypic properties and phylogenetic inference, strain CSW-10T should represent a novel species of the genus Sphingomonas , for which the name Sphingomonas lacunae sp. nov. is proposed. The type strain is CSW-10T (=BCRC 81190T =LMG 31340T).


2020 ◽  
Vol 70 (5) ◽  
pp. 3145-3153 ◽  
Author(s):  
Shih-Yi Sheu ◽  
Tzu-Ying Chen ◽  
Wen-Ming Chen

A bacterial strain designated CAR-16T was isolated from a freshwater lake in Taiwan and characterized using the polyphasic taxonomic approach. Cells were Gram-stain-negative, aerobic, motile by gliding, rod-shaped and formed rose-colored colonies. Optimal growth occurred at 30 °C, pH 7 and with 0 % NaCl. Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of 92 protein clusters indicated that CAR-16T represented a member of the family Cytophagaceae and formed a phylogenetic lineage in the genus Aquirufa . CAR-16T was most closely related to Aquirufa nivalisilvae 59G-WUEMPELT with a 99.7 % 16S rRNA gene sequence similarity. CAR-16T showed 71.2–79.5 % average nucleotide identity and 17.8–21.7 % digital DNA–DNA hybridization identity with the strains of other species of the genus Aquirufa . The major fatty acids of strain CAR-16T were iso-C15 : 0, iso-C15 : 0 3-OH, C16 : 1ω5c and summed feature 3 (C16 : 1ω7c/C16 : 1ω6c and/or iso-C15 : 0 2-OH). The polar lipid profile consisted of a mixture of phosphatidylethanolamine and several uncharacterized aminophospholipids, phospholipids and lipids. The major isoprenoid quinone was MK-7. The genomic DNA G+C content of CAR-16T was 38.8 mol%. On the basis of phenotypic and genotypic properties and phylogenetic inference, CAR-16T should be classified as representing a novel species of the genus Aquirufa , for which the name Aquirufa rosea sp. nov. is proposed. The type strain is CAR-16T (=BCRC 81153T=LMG 30923T=KCTC 62869T).


Author(s):  
Yun-Seok Jeong ◽  
Woorim Kang ◽  
June-Young Lee ◽  
Hojun Sung ◽  
Hyun Sik Kim ◽  
...  

A novel Gram-stain-negative, coccus-shaped, aerobic and motile bacterial strain, designated S12M18T, was isolated from the gut of the Korean turban shell, Turbo cornutus. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain S12M18T belonged to the genus Pseudorhodobacter and had the highest 16S rRNA gene sequence similarity twith Pseudorhodobacter aquimaris HDW-19T (98.63 %). The phylogenomic tree congruently verified that strain S12M18T occupies a taxonomic position within the genus Pseudorhodobacter . The OrthoANIu value between strain S12M18T and P. aquimaris HDW-19T was 87.22 %. The major cellular fatty acid of strain S12M18T was summed feature 8 (C18 : 1 ω7c or C18 : 1 ω6c). The major components of the polar lipids were phosphatidylcholine, phosphatidylglycerol and phosphatidylethanolamine. The predominant isoprenoid quinone was Q-10. The DNA G+C content was 57.8 mol%. The polyphasic analyses indicated that strain S12M18T represents a novel species of the genus Pseudorhodobacter , for which the name Pseudorhodobacter turbinis sp. nov. is proposed. The type strain is S12M18T (=KCTC 62742T=JCM 33168T).


Sign in / Sign up

Export Citation Format

Share Document