scholarly journals Enterobacter arachidis sp. nov., a plant-growth-promoting diazotrophic bacterium isolated from rhizosphere soil of groundnut

2010 ◽  
Vol 60 (7) ◽  
pp. 1559-1564 ◽  
Author(s):  
Munusamy Madhaiyan ◽  
Selvaraj Poonguzhali ◽  
Jung-Sook Lee ◽  
Venkatakrishnan Sivaraj Saravanan ◽  
Keun-Chul Lee ◽  
...  

A methylotrophic nitrogen-fixing bacterial strain, Ah-143T, isolated from the rhizosphere soil of field-grown groundnut was analysed by a polyphasic taxonomic approach. Comparative 16S rRNA gene sequence analysis combined with rpoB gene sequence analysis allocated strain Ah-143T to the family Enterobacteriaceae, with Enterobacter radicincitans and Enterobacter cowanii as the closest relatives. The strain is Gram-stain-negative, non-spore-forming, aerobic and motile, having straight rod-shaped cells with a DNA G+C content of approximately 53.2 mol%. The strain utilizes methanol as a carbon source and the mxaF gene was closely related to the mxaF gene of members of the genus Methylobacterium. The fatty acid profile consisted of C16 : 0, C17 : 0 cyclo, C18 : 1 ω7c, summed feature 2 (iso-C16 : 1 I and/or C14 : 0 3-OH) and summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c) as the major components. DNA–DNA relatedness of strain Ah-143T with its close relatives was less than 20 %. On the basis of the phylogenetic analyses, DNA–DNA hybridization data, and unique physiological and biochemical characteristics, it is proposed that the strain represents a novel species of the genus Enterobacter and should be named Enterobacter arachidis sp. nov. The type strain is Ah-143T (=NCIMB 14469T =KCTC 22375T).

2011 ◽  
Vol 61 (6) ◽  
pp. 1304-1308 ◽  
Author(s):  
Fan Wang ◽  
Xiao-Xiong Xu ◽  
Zhi Qu ◽  
Cheng Wang ◽  
Hai-Peng Lin ◽  
...  

Strain 210417T, which forms highly branched substrate and aerial mycelia, is a Gram-positive, aerobic and non-motile actinomycete isolated from mangrove rhizosphere soil. 16S rRNA gene sequence analysis showed that the strain should be classified in the genus Nonomuraea, being most closely related to the type strains of Nonomuraea coxensis (99.6 %) and Nonomuraea bangladeshensis (99.3 %). Chemotaxonomic properties [madurose as the major sugar in the cell wall; meso-diaminopimelic acid and N-acetylmuramic acid in the peptidoglycan; MK-9(H4) as the major menaquinone; iso-C16 : 0 (24.1 %) as major fatty acid; and phospholipid pattern type IV] are consistent with the assignment of strain 210417T to the genus Nonomuraea. Strain 210417T could be differentiated from the closely related species N. coxensis and N. bangladeshensis by morphological, physiological, biochemical and chemotaxonomic properties, 16S rRNA gene sequence analysis and DNA–DNA hybridization results. It is therefore proposed that strain 210417T represents a novel species of the genus Nonomuraea, for which the name Nonomuraea wenchangensis sp. nov. is given; the type strain is 210417T ( = CGMCC 4.5598T  = DSM 45477T).


2011 ◽  
Vol 61 (2) ◽  
pp. 320-324 ◽  
Author(s):  
Cheng Wang ◽  
Xiao-Xiong Xu ◽  
Zhi Qu ◽  
Hai-Long Wang ◽  
Hai-Peng Lin ◽  
...  

Strain 211018T was isolated from mangrove Excocaria agallocha rhizosphere soil. 16S rRNA gene sequence analysis showed the highest similarity to the type strains of Micromonospora olivasterospora DSM 43868T (98.6 %) and Micromonospora pattaloongensis TJ2-2T (98.4 %). gyrB gene sequence analysis also indicated that strain 211018T should be assigned to the genus Micromonospora. The characteristic whole-cell sugars are xylose, mannose and arabinose. The predominant menaquinone is MK-9(H4) and the major fatty acids are iso-C15 : 0 (27.5 %), 10-methyl C17 : 0 (14.2 %), C17 : 1 ω8c (12.8 %), iso-C16 : 0 (12.6 %), anteiso-C15 : 0 (6.1 %), iso-C17 : 0 (4.1 %) and anteiso-C17 : 0 (4.0 %). The phospholipid profile comprises phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannosides. The DNA G+C content is 70.8 mol%. The chemotaxonomic data of the strain coincided with those of the genus Micromonospora. Furthermore, a combination of DNA–DNA hybridization results and some physiological and biochemical properties indicated that the novel strain could be readily distinguished from the closest phylogenetic relatives. On the basis of these phenotypic and genotypic data, strain 211018T represents a novel species of the genus Micromonospora, for which the name Micromonospora rhizosphaerae sp. nov. is proposed. The type strain is 211018T (=CGMCC 4.5599T =DSM 45431T).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3451-3456 ◽  
Author(s):  
E.V.V. Ramaprasad ◽  
Ch. Sasikala ◽  
Ch. V. Ramana

A Gram-stain-negative, aerobic, pale orange, rod-shaped, non-motile bacterial strain, designated JC289T was isolated from a rhizosphere soil sample of the plant Oryza sativa (L.). 16S rRNA gene sequence analysis clearly allocated strain JC289T to the Flectobacillus cluster, showing highest sequence similarities to Flectobacillus roseus GFA-11T (99.5 %), Flectobacillus major ATCC 29496T (96.7 %) and Flectobacillus lacus CL-GP79T (94.6 %). Major (>5 %) fatty acids of strain JC289T were C16 : 1ω5c, iso-C15 : 0, C15 : 0 2-OH, iso-C15 : 0 3-OH and C16 : 1ω7c/C16 : 1ω6c, with minor amounts (>1– < 5 %) of C14 : 0, C16 : 0, anteiso-C15 : 0, C16 : 0 3-OH, iso-C17 : 0 3-OH, anteiso-C17 : 1B and/or iso-C17 : 1I. Menaquinone-7 was the major quinone of strain JC289T, and the polar lipid profile contained phosphatidylethanolamine, five unidentified aminophospholipids, two unidentified phospholipids, two unidentified aminolipids, two unidentified glycolipids and five unidentified lipids. DNA–DNA relatedness values of strain JC289T with Flectobacillus roseus LMG 24501T and Flectobacillus major LMG 13163T were 24.6 % (31.4 %, reciprocal analysis) and 16.2 % (22.4 %), respectively. On the basis of 16S rRNA gene sequence analysis, physiological and biochemical test results, and chemotaxonomic analysis, strain JC289T can be differentiated from its closest relatives in the genus Flectobacillus. Based on the data presented, it is concluded that strain JC289T represents a novel species of the genus Flectobacillus, for which the name Flectobacillus rhizosphaerae sp. nov. is proposed. The type strain is JC289T ( = KCTC 42575T = LMG 28712T).


2010 ◽  
Vol 60 (6) ◽  
pp. 1322-1327 ◽  
Author(s):  
Munusamy Madhaiyan ◽  
Selvaraj Poonguzhali ◽  
Jung-Sook Lee ◽  
Murugaiyan Senthilkumar ◽  
Keun Chul Lee ◽  
...  

Two yellow-pigmented, Gram-stain-positive, aerobic, motile, short rod-shaped bacteria were isolated from natural teak tree rhizosphere soil and their taxonomic positions were determined by using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strains TG-S248T and TG-S240 formed a distinct phyletic line within the genus Leifsonia. 16S rRNA gene sequence analysis of strain TG-S248T with sequences from Leifsonia shinshuensis DB 102T, L. poae VKM Ac-1401T, L. naganoensis DB 103T, L. aquatica DSM 20146T and L. xyli subsp. cynodontis JCM 9733T revealed pairwise similarities ranging from 98.7 to 99.1 %. The major fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The G+C content of the DNA of the type strain was 69.4 mol%. DNA–DNA hybridization experiments revealed low levels of DNA–DNA relatedness (32 % or less) between strain TG-S248T and its closest relatives. Based on differences in phenotypic and genotypic characteristics, strain TG-S248T (=LMG 24767T =JCM 15679T) is designated the type strain of a novel species of the genus Leifsonia, for which the name Leifsonia soli sp. nov. is proposed.


2009 ◽  
Vol 75 (10) ◽  
pp. 3348-3351 ◽  
Author(s):  
Jill Tomaras ◽  
Jason W. Sahl ◽  
Robert L. Siegrist ◽  
John R. Spear

ABSTRACT Microbial diversity of septic tank effluent (STE) and the biomat that is formed as a result of STE infiltration on soil were characterized by 16S rRNA gene sequence analysis. Results indicate that microbial communities are different within control soil, STE, and the biomat and that microbes found in STE are not found in the biomat. The development of a stable soil biomat appears to provide the best on-site water treatment or protection for subsequent groundwater interactions of STE.


2010 ◽  
Vol 60 (4) ◽  
pp. 949-952 ◽  
Author(s):  
Soo-Jin Kim ◽  
Hang-Yeon Weon ◽  
Yi-Seul Kim ◽  
Rangasamy Anandham ◽  
Seung-Hee Yoo ◽  
...  

An ivory-coloured bacterium, designated strain 5YN7-3T, was isolated from a wetland, Yongneup, Korea. Cells of the strain were aerobic, Gram-stain-negative, non-motile and short rods. 16S rRNA gene sequence analysis demonstrated that strain 5YN7-3T belongs to the order Rhizobiales of the class Alphaproteobacteria and is closely related to Kaistia soli 5YN9-8T (97.8 %), Kaistia granuli Ko04T (97.6 %) and Kaistia adipata Chj404T (97.4 %). Strain 5YN7-3T showed DNA–DNA hybridization values of 28, 22 and 35 % with K. granuli Ko04T, K. soli 5YN9-8T and K. adipata Chj404T, respectively. The major fatty acids were C18 : 1 ω7c (51.2 %), C19 : 0 cyclo ω8c (25.0 %), C18 : 0 (12.9 %) and C16 : 0 (10.8 %) (>10 % of total fatty acids). Ubiquinone-10 was the major isoprenoid quinone and the DNA G+C content was 66.5 mol%. The phenotypic characteristics in combination with 16S rRNA gene sequence analysis and DNA–DNA hybridization data clearly define strain 5YN7-3T as a novel species of the genus Kaistia, for which the name Kaistia terrae sp. nov. is proposed. The type strain is 5YN7-3T (=KACC 12910T =DSM 21341T).


2013 ◽  
Vol 63 (Pt_7) ◽  
pp. 2588-2593 ◽  
Author(s):  
Bárbara Almeida ◽  
Ivone Vaz-Moreira ◽  
Peter Schumann ◽  
Olga C. Nunes ◽  
Gilda Carvalho ◽  
...  

A Gram-positive, aerobic, non-motile, non-endospore-forming rod-shaped bacterium with ibuprofen-degrading capacity, designated strain I11T, was isolated from activated sludge from a wastewater treatment plant. The major respiratory quinone was demethylmenaquinone DMK-7, C18 : 1 cis9 was the predominant fatty acid, phosphatidylglycerol was the predominant polar lipid, the cell wall contained meso-diaminopimelic acid as the diagnostic diamino acid and the G+C content of the genomic DNA was 74.1 mol%. On the basis of 16S rRNA gene sequence analysis, the closest phylogenetic neighbours of strain I11T were Patulibacter ginsengiterrae CECT 7603T (96.8 % similarity), Patulibacter minatonensis DSM 18081T (96.6 %) and Patulibacter americanus DSM 16676T (96.6 %). Phenotypic characterization supports the inclusion of strain I11T within the genus Patulibacter (phylum Actinobacteria) . However, distinctive features and 16S rRNA gene sequence analysis suggest that is represents a novel species, for which the name Patulibacter medicamentivorans sp. nov. is proposed. The type strain is I11T ( = DSM 25962T = CECT 8141T).


2007 ◽  
Vol 57 (2) ◽  
pp. 293-296 ◽  
Author(s):  
Mitsuo Sakamoto ◽  
Maki Kitahara ◽  
Yoshimi Benno

A bacterial strain isolated from human faeces, M-165T, was characterized in terms of its phenotypic and biochemical features, cellular fatty acid profile, menaquinone profile and phylogenetic position (based on 16S rRNA gene sequence analysis). A 16S rRNA gene sequence analysis showed that the isolate was a member of the genus Parabacteroides. Strain M-165T was closely related to Parabacteroides merdae strains, showing 98 % sequence similarity. The strain was obligately anaerobic, non-pigmented, non-spore-forming, non-motile, Gram-negative, rod-shaped and was able to grow on media containing 20 % bile. Although the phenotypic characteristics of the strain M-165T were similar to those of P. merdae, the isolate could be differentiated from P. merdae by means of API 20A tests for l-arabinose and l-rhamnose fermentation. DNA–DNA hybridization experiments revealed the genomic distinctiveness of the novel strain with respect to P. merdae JCM 9497T (⩽60 % DNA–DNA relatedness). The DNA G+C content of the strain is 47.6 mol%. On the basis of these data, strain M-165T represents a novel species of the genus Parabacteroides, for which the name Parabacteroides johnsonii sp. nov. is proposed. The type strain is M-165T (=JCM 13406T=DSM 18315T).


Sign in / Sign up

Export Citation Format

Share Document