scholarly journals Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons

2004 ◽  
Vol 54 (1) ◽  
pp. 141-148 ◽  
Author(s):  
Michail M. Yakimov ◽  
Laura Giuliano ◽  
Renata Denaro ◽  
Ermanno Crisafi ◽  
Tatiana N. Chernikova ◽  
...  

An aerobic, heterotrophic, Gram-negative, curved bacterial strain, designated MIL-1T, was isolated by extinction dilution from an n-tetradecane enrichment culture that was established from sea water/sediment samples collected in the harbour of Milazzo, Italy. In the primary enrichment, the isolate formed creamy-white, medium-sized colonies on the surface of the agar. The isolate did not grow in the absence of NaCl; growth was optimal at 2·7 % NaCl. Only a narrow spectrum of organic compounds, including aliphatic hydrocarbons (C7–C20), their oxidized derivatives and acetate, were used as growth substrates. The isolate was not able to grow under denitrifying conditions. The DNA G+C content and genome size of strain MIL-1T were estimated to be 53·2 mol% and 2·2 Mbp, respectively. The major cellular and phospholipid fatty acids were palmitoleic, palmitic and oleic acids (33·5, 29·5 and 11·0 % and 18, 32 and 31 %, respectively). 3-Hydroxy lauric acid was the only hydroxy fatty acid detected. Thirteen different compounds that belonged to two types of phospholipid (phosphatidylethylamine and phosphatidylglycerol) were identified. 16S rRNA gene sequence analysis revealed that this isolate represents a distinct phyletic lineage within the γ-Proteobacteria and has about 94·4 % sequence similarity to Oceanobacter kriegii (the closest bacterial species with a validly published name). The deduced protein sequence of the putative alkane hydrolase, AlkB, of strain MIL-1T is related to the corresponding enzymes of Alcanivorax borkumensis and Pseudomonas oleovorans (81 and 80 % similarity, respectively). On the basis of the analyses performed, Thalassolituus oleivorans gen. nov., sp. nov. is described. Strain MIL-1T (=DSM 14913T=LMG 21420T) is the type and only strain of T. oleivorans.

2010 ◽  
Vol 60 (7) ◽  
pp. 1595-1599 ◽  
Author(s):  
Mi-Jin Choi ◽  
Jee-Yeon Bae ◽  
Ki-Yeon Kim ◽  
Hojeong Kang ◽  
Chang-Jun Cha

Identification of a bacterial strain, designated CJ71T, was carried out using a polyphasic taxonomic approach. Strain CJ71T was isolated from sediment from the estuarine wetland of the Han River, South Korea, by enrichment culture using pyrene as the sole carbon and energy source. The isolate was white-pigmented, rod-shaped, Gram-positive, strictly aerobic and motile. 16S rRNA gene sequence analysis revealed that strain CJ71T had the highest sequence similarity (96.9 %) to Brevibacillus formosus DSM 9885T. The predominant cellular fatty acids in strain CJ71T were anteiso-C15 : 0 (49.5 %), iso-C15 : 0 (16.9 %), iso-C14 : 0 (16.9 %) and iso-C16 : 0 (4.9 %). The major isoprenoid quinone was MK-7. The G+C content of the genomic DNA was 52.4 mol%. Results from the polyphasic taxonomic study suggest that strain CJ71T represents a novel species of the genus Brevibacillus for which the name Brevibacillus fluminis sp. nov. is proposed; the type strain is CJ71T (=KACC 13381T=JCM 15716T)


2004 ◽  
Vol 54 (5) ◽  
pp. 1799-1803 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Soo-Hwan Yeo ◽  
In-Gi Kim ◽  
Tae-Kwang Oh

Two Gram-negative, motile, non-spore-forming and slightly halophilic rods (strains SW-145T and SW-156T) were isolated from sea water of the Yellow Sea in Korea. Strains SW-145T and SW-156T grew optimally at 37 and 30–37 °C, respectively, and in the presence of 2–6 % (w/v) NaCl. Strains SW-145T and SW-156T were chemotaxonomically characterized as having ubiquinone-9 as the predominant respiratory lipoquinone and C16 : 0, C18 : 1 ω9c, C16 : 1 ω9c and C12 : 0 3-OH as the major fatty acids. The DNA G+C contents of strains SW-145T and SW-156T were 58 and 57 mol%, respectively. Phylogenetic analyses based on 16S rRNA gene sequences showed that strains SW-145T and SW-156T fell within the evolutionary radiation enclosed by the genus Marinobacter. The 16S rRNA gene sequences of strains SW-145T and SW-156T were 94·8 % similar. Strains SW-145T and SW-156T exhibited 16S rRNA gene sequence similarity levels of 94·3–98·1 and 95·4–97·7 %, respectively, with respect to the type strains of all Marinobacter species. Levels of DNA–DNA relatedness, together with 16S rRNA gene sequence similarity values, indicated that strains SW-145T and SW-156T are members of two species that are distinct from seven Marinobacter species with validly published names. On the basis of phenotypic properties and phylogenetic and genotypic distinctiveness, strains SW-145T (=KCTC 12185T=DSM 16070T) and SW-156T (=KCTC 12184T=DSM 16072T) should be placed in the genus Marinobacter as the type strains of two distinct novel species, for which the names Marinobacter flavimaris sp. nov. and Marinobacter daepoensis sp. nov. are proposed.


2005 ◽  
Vol 55 (2) ◽  
pp. 763-767 ◽  
Author(s):  
Rosica Valcheva ◽  
Maher Korakli ◽  
Bernard Onno ◽  
Hervé Prévost ◽  
Iskra Ivanova ◽  
...  

Twenty morphologically different strains were chosen from French wheat sourdough isolates. Cells were Gram-positive, non-spore-forming, non-motile rods. The isolates were identified using amplified-fragment length polymorphism, randomly amplified polymorphic DNA and 16S rRNA gene sequence analysis. All isolates were members of the genus Lactobacillus. They were identified as representing Lactobacillus plantarum, Lactobacillus paralimentarius, Lactobacillus sanfranciscensis, Lactobacillus spicheri and Lactobacillus sakei. However, two isolates (LP38T and LP39) could be clearly discriminated from recognized Lactobacillus species on the basis of genotyping methods. 16S rRNA gene sequence similarity and DNA–DNA relatedness data indicate that the two strains belong to a novel Lactobacillus species, for which the name Lactobacillus hammesii is proposed. The type strain is LP38T (=DSM 16381T=CIP 108387T=TMW 1.1236T).


2012 ◽  
Vol 62 (Pt_4) ◽  
pp. 795-799 ◽  
Author(s):  
Moriyuki Hamada ◽  
Chiaki Komukai ◽  
Tomohiko Tamura ◽  
Lyudmila I. Evtushenko ◽  
Natalia G. Vinokurova ◽  
...  

A non-motile and non-endospore-forming rod, strain NBRC 16403T, was isolated from the phyllosphere of a sedge (Carex sp.). 16S rRNA gene sequence analysis indicated that strain NBRC 16403T was closely related to Herbiconiux solani DSM 19813T (98.6 % 16S rRNA gene sequence similarity), Herbiconiux ginsengi wged11T (97.8 %) and Herbiconiux moechotypicola RB-62T (97.8 %). The peptidoglycan (B2γ type) contained d- and l-2,4-diaminobutyric acids, d-alanine, glycine and threo-3-hydroxyglutamic acid, which replaced glutamic acid almost completely. The predominant menaquinones were MK-10 and MK-11. The polar lipid pattern comprised diphosphatidylglycerol, phosphatidylglycerol, three glycolipids and minor amounts of other polar lipids. The major fatty acids were anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0; no cyclohexyl-C17 : 0 was detected. The DNA G+C content was 71.0 mol%. The results of phylogenetic and DNA–DNA relatedness studies, along with phenotypic differences between strain NBRC 16403T and recognized members of the genus Herbiconiux, indicated that the isolate should be assigned to a novel species of the genus Herbiconiux, for which the name Herbiconiux flava sp. nov. is proposed. The type strain is NBRC 16403T ( = VKM Ac-2058T).


2007 ◽  
Vol 57 (11) ◽  
pp. 2557-2561 ◽  
Author(s):  
Takashi Itoh ◽  
Naoto Yoshikawa ◽  
Tomonori Takashina

A novel thermoacidophilic, cell wall-less archaeon, strain IC-189T, was isolated from a solfataric field in Ohwaku-dani, Hakone, Japan. The cells were irregular cocci, sometimes lobed, club-shaped or catenated, and were highly variable in size, ranging from 0.8 to 8.0 μm in diameter. The strain grew at temperatures in the range 38–68 °C (optimally at 60 °C) and at pH 1.8–4.0 (optimally at around pH 3.0). Strain IC-189T was obligately aerobic and heterotrophic, requiring yeast extract for growth. Yeast extract, glucose and mannose served as carbon and energy sources. The polar lipids consisted mainly of cyclic or acyclic glycerol-bisdiphytanyl-glycerol tetraethers, and the predominant quinone was a menaquinone with seven isoprenoid units (MK-7). The G+C content of total DNA was 56.1 mol%. 16S rRNA gene sequence analysis revealed that strain IC-189T was a member of the order Thermoplasmatales, but diverged from the hitherto known species of the genera Thermoplasma, Picrophilus and Ferroplasma (86.2–91.0 % sequence similarity). These phenotypic and phylogenetic properties clearly support a separate taxonomic status for this strain. Therefore, strain IC-189T represents a novel genus (order Thermoplasmatales) and species, for which the name Thermogymnomonas acidicola gen. nov., sp. nov. is proposed, with type strain IC-189T (=JCM 13583T=DSM 18835T).


2007 ◽  
Vol 57 (7) ◽  
pp. 1535-1538 ◽  
Author(s):  
Ivone Vaz-Moreira ◽  
M. Fernanda Nobre ◽  
Olga C. Nunes ◽  
Célia M. Manaia

A bacterial strain, DC-186T, isolated from home-made compost, was characterized for its phenotypic and phylogenetic properties. The isolate was a Gram-negative rod that was able to grow at 15–36 °C and pH 5.5–8.0. Strain DC-186T was positive in tests for catalase, oxidase and β-galactosidase activities and aesculin hydrolysis. The predominant fatty acids were the summed feature C16 : 1/iso-C15 : 0 2-OH (42 %) and iso-C15 : 0 (26 %), the major respiratory quinone was menaquinone-7 and the genomic DNA G+C content was 42 mol%. 16S rRNA gene sequence analysis and phenetic characterization indicated that this organism belongs to the phylum Bacteroidetes and revealed its affiliation to the family Sphingobacteriaceae. Of recognized taxa, strain DC-186T was most closely related to Sphingobacterium daejeonense (90 % sequence similarity) based on 16S rRNA gene sequence analysis. The low 16S rRNA gene sequence similarity with other recognized taxa and the identification of distinctive phenetic features for this isolate support the definition of a new genus within the family Sphingobacteriaceae. The name Pseudosphingobacterium domesticum gen. nov., sp. nov. is proposed, with strain DC-186T (=CCUG 54353T=LMG 23837T) as the type strain.


2010 ◽  
Vol 60 (11) ◽  
pp. 2577-2582 ◽  
Author(s):  
Myungjin Lee ◽  
Sung-Geun Woo ◽  
Joonhong Park ◽  
Soon-Ae Yoo

A Gram-negative, non-motile, aerobic bacterial strain, designated MJ20T, was isolated from farm soil near Daejeon (South Korea) and was characterized taxonomically by using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain MJ20T belongs to the family Cytophagaceae, class Sphingobacteria, and was related most closely to Dyadobacter fermentans DSM 18053T (98.9 % sequence similarity), Dyadobacter beijingensis JCM 14200T (98.0 %) and Dyadobacter ginsengisoli KCTC 12589T (96.4 %). The G+C content of the genomic DNA of strain MJ20T was 48.5 mol%. The detection of MK-7 as the predominant menaquinone and a fatty acid profile with summed feature 4 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH), iso-C15 : 0, C16 : 0 and C16 : 1 ω5c as major components supported the affiliation of strain MJ20T to the genus Dyadobacter. The new isolate exhibited relatively low levels of DNA–DNA relatedness with respect to D. fermentans DSM 18053T (mean±sd of three determinations, 47±7 %) and D. beijingensis JCM 14200T (38±8 %). On the basis of its phenotypic and genotypic properties together with phylogenetic distinctiveness, strain MJ20T (=KCTC 22481T =JCM 16232T) should be classified in the genus Dyadobacter as the type strain of a novel species, for which the name Dyadobacter soli sp. nov. is proposed.


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1929-1934 ◽  
Author(s):  
Morgane Rossi-Tamisier ◽  
Samia Benamar ◽  
Didier Raoult ◽  
Pierre-Edouard Fournier

Modern bacterial taxonomy is based on a polyphasic approach that combines phenotypic and genotypic characteristics, including 16S rRNA sequence similarity. However, the 95 % (for genus) and 98.7 % (for species) sequence similarity thresholds that are currently recommended to classify bacterial isolates were defined by comparison of a limited number of bacterial species, and may not apply to many genera that contain human-associated species. For each of 158 bacterial genera containing human-associated species, we computed pairwise sequence similarities between all species that have names with standing in nomenclature and then analysed the results, considering as abnormal any similarity value lower than 95 % or greater than 98.7 %. Many of the current bacterial species with validly published names do not respect the 95 and 98.7 % thresholds, with 57.1 % of species exhibiting 16S rRNA gene sequence similarity rates ≥98.7 %, and 60.1 % of genera containing species exhibiting a 16S rRNA gene sequence similarity rate <95 %. In only 17 of the 158 genera studied (10.8 %), all species respected the 95 and 98.7 % thresholds. As we need powerful and reliable taxonomical tools, and as potential new tools such as pan-genomics have not yet been fully evaluated for taxonomic purposes, we propose to use as thresholds, genus by genus, the minimum and maximum similarity values observed among species.


2006 ◽  
Vol 56 (10) ◽  
pp. 2271-2275 ◽  
Author(s):  
Ken W. K. Lau ◽  
Jianping Ren ◽  
Natalie L. M. Wai ◽  
Simon C. L. Lau ◽  
Pei-Yuan Qian ◽  
...  

A Gram-negative, aerobic, halophilic, neutrophilic, rod-shaped, non-pigmented, polar-flagellated bacterium, UST010306-043T, was isolated from a pearl-oyster culture pond in Sanya, Hainan Province, China in January 2001. This marine bacterium had an optimum temperature for growth of between 33 and 37 °C. On the basis of 16S rRNA gene sequence analysis, the strain was closely related to Marinomonas aquimarina and Marinomonas communis, with 97.5–97.7 and 97.1 % sequence similarity, respectively. Levels of DNA–DNA relatedness to the type strains of these species were well below 70 %. Analyses of phylogenetic, phenotypic and chemotaxomonic characteristics showed that strain UST010306-043T was distinct from currently established Marinomonas species. A novel species with the name Marinomonas ostreistagni sp. nov. is proposed to accommodate this bacterium, with strain UST010306-043T (=JCM 13672T=NRRL B-41433T) as the type strain.


2006 ◽  
Vol 56 (9) ◽  
pp. 2031-2036 ◽  
Author(s):  
Kyoung-Ho Kim ◽  
Leonid N. Ten ◽  
Qing-Mei Liu ◽  
Wan-Taek Im ◽  
Sung-Taik Lee

A Gram-negative, strictly aerobic, rod-shaped, non-motile, non-spore-forming bacterial strain, designated TR6-04T, was isolated from compost and characterized taxonomically by using a polyphasic approach. The organism grew optimally at 30 °C and at pH 6.5–7.0. The isolate was positive for catalase and oxidase tests but negative for gelatinase, indole and H2S production. Comparative 16S rRNA gene sequence analysis showed that strain TR6-04T fell within the radiation of the cluster comprising Sphingobacterium species and clustered with Sphingobacterium mizutaii ATCC 33299T (96.7 % sequence similarity); the similarity to sequences of other species within the family Sphingobacteriaceae was less than 92.0 %. The G+C content of the genomic DNA was 38.7 mol%. The predominant respiratory quinone was MK-7. The major fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 4 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c). These chemotaxonomic data supported the affiliation of strain TR6-04T to the genus Sphingobacterium. However, on the basis of its phenotypic properties and phylogenetic distinctiveness, strain TR6-04T (=KCTC 12579T=LMG 23402T=CCUG 52468T) should be classified as the type strain of a novel species, for which the name Sphingobacterium daejeonense sp. nov. is proposed.


Sign in / Sign up

Export Citation Format

Share Document