scholarly journals Mycoplasma ovis comb. nov. (formerly Eperythrozoon ovis), an epierythrocytic agent of haemolytic anaemia in sheep and goats

2004 ◽  
Vol 54 (2) ◽  
pp. 365-371 ◽  
Author(s):  
Harold Neimark ◽  
Brent Hoff ◽  
Martin Ganter

Eperythrozoon ovis, an erythrocytic agent that causes haemolytic anaemia in sheep and goats, occurs worldwide and is currently thought to be a rickettsia. To determine the relationship between this agent and other haemotrophic bacterial parasites, the 16S rRNA gene of this organism was sequenced. Phylogenetic analysis revealed that this wall-less bacterium is not a rickettsia, but a mycoplasma. This mycoplasma is related closely to several other uncultivated, epierythrocytic mycoplasmas that comprise a recently identified group, the haemotrophic mycoplasmas (haemoplasmas). The haemoplasma group is composed of former Eperythrozoon and Haemobartonella species, as well as newly identified epierythrocytic mycoplasmas. Haemoplasmas parasitize the surface of erythrocytes of a wide variety of vertebrate animal hosts and are transmitted mainly by blood-feeding arthropod vectors. Recognition that E. ovis is a mycoplasma provides a new approach to dealing with this bacterium. It is proposed that E. ovis should be reclassified as Mycoplasma ovis comb. nov.

2019 ◽  
Vol 85 (6) ◽  
Author(s):  
Shuchen Feng ◽  
Sandra L. McLellan

ABSTRACTThe identification of sewage contamination in water has primarily relied on the detection of human-associatedBacteroidesusing markers within the V2 region of the 16S rRNA gene. Despite the establishment of multiple assays that target the HF183 cluster (i.e.,Bacteroides dorei) and otherBacteroidesorganisms (e.g.,Bacteroides thetaiotaomicron), the potential for more human-associated markers in this genus has not been explored in depth. We examined theBacteroidespopulation structure in sewage and animal hosts across the V4V5 and V6 hypervariable regions. Using near-full-length cloned sequences, we identified the sequences in the V4V5 and V6 hypervariable regions that are linked to the HF183 marker in the V2 region and found these sequences were present in multiple animals. In addition, the V4V5 and V6 regions contained human fecal marker sequences for organisms that were independent of the HF183 cluster. The most abundantBacteroidesin untreated sewage was not human associated but pipe derived. Two TaqMan quantitative PCR (qPCR) assays targeting the V4V5 and V6 regions of this organism were developed. Validation studies using fecal samples from seven animal hosts (n = 76) and uncontaminated water samples (n = 30) demonstrated the high specificity of the assays for sewage. FreshwaterBacteroideswere also identified in uncontaminated water samples, demonstrating that measures of totalBacteroidesdo not reflect fecal pollution. A comparison of two previously described humanBacteroidesassays (HB and HF183/BacR287) in municipal wastewater influent and sewage-contaminated urban water samples revealed identical results, illustrating the assays target the same organism. The detection of sewage-derivedBacteroidesprovided an independent measure of sewage-impacted waters.IMPORTANCEBacteroidesare major members of the gut microbiota, and host-specific organisms within this genus have been used extensively to gain information on pollution sources. This study provides a broad view of the population structure ofBacteroideswithin sewage to contextualize the well-studied HF183 marker for a human-associatedBacteroides. The study also delineates host-specific sequence patterns across multiple hypervariable regions of the 16S rRNA gene to improve our ability to use sequence data to assess water quality. Here, we demonstrate that regions downstream of the HF183 marker are nonspecific but other potential human-associated markers are present. Furthermore, we show the most abundantBacteroidesin sewage is free living, rather than host associated, and specifically found in sewage. Quantitative PCR assays that target organisms specific to sewer pipes offer measures that are independent of the human microbiome for identifying sewage pollution in water.


2010 ◽  
Vol 59 (12) ◽  
pp. 1505-1508 ◽  
Author(s):  
Antoine Chaillon ◽  
Gaelle Baty ◽  
Marie Agnès Lauvin ◽  
Jean Marc Besnier ◽  
Alain Goudeau ◽  
...  

Campylobacter spp. are common causes of gastrointestinal infections. Campylobacter fetus is a much rarer pathogen in humans, and usually causes bacteraemia and systemic complications in patients with predisposing conditions. We report a case of spondylodiscitis caused by C. fetus subsp. fetus as revealed by vertebral biopsy culture. This identification was confirmed by sequencing the 16S rRNA gene and by phylogenetic analysis. Treatment consisted of 6 weeks antimicrobial therapy combined with a strict initial immobilization, followed by a re-education program. The patient's recovery was uneventful.


2007 ◽  
Vol 57 (2) ◽  
pp. 276-286 ◽  
Author(s):  
Ivo M. Chelo ◽  
Líbia Zé-Zé ◽  
Rogério Tenreiro

The phylogenetic structure of the Leuconostoc–Oenococcus–Weissella clade was evaluated by comparison of 16S rRNA gene, dnaA, gyrB, rpoC and dnaK sequence analysis. Phylogenies obtained with the different genes were in overall good agreement and a well-supported, almost fully resolved phylogenetic tree was obtained when the combined data were analysed in a Bayesian approach. A rapid basal diversification of the three genera is suggested. Evolutionary rates of the 16S rRNA gene in these genera seem to be different and specifically related to the evolution of this group, revealing the importance of this sequence in the constitution of the present taxonomy, but preventing its straightforward use in phylogenetic inference.


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 636-640 ◽  
Author(s):  
Nang Kyu Kyu Win ◽  
Seung-Yeol Lee ◽  
Assunta Bertaccini ◽  
Shigetou Namba ◽  
Hee-Young Jung

A phytoplasma was identified in naturally infected wild Balanites triflora plants exhibiting typical witches’ broom symptoms (Balanites witches’ broom: BltWB) in Myanmar. The 16S rRNA gene sequence revealed that BltWB phytoplasma had the highest similarity to that of ‘Candidatus Phytoplasma ziziphi’ and it was also closely related to that of ‘Candidatus Phytoplasma ulmi ’. Phylogenetic analysis of the 16S rRNA gene sequences indicated that the BltWB phytoplasma clustered as a discrete subclade with Elm yellows phytoplasmas. RFLP analysis of the 16S rRNA gene including the 16S–23S spacer region differentiated the BltWB phytoplasma from ‘Ca. P. ziziphi ’, ‘Ca. P. ulmi ’ and ‘Candidatus Phytoplasma trifolii ’. Analysis of additional ribosomal protein (rp) and translocase protein (secY) gene sequences and phylogenetic analysis of BltWB showed that this phytoplasma was clearly distinguished from those of other ‘Candidatus Phytoplasma ’ taxa. Taking into consideration the unique plant host and the restricted geographical occurrence in addition to the 16S rRNA gene sequence similarity, the BltWB phytoplasma is proposed to represent a novel taxon, ‘Candidatus Phytoplasma balanitae’.


2009 ◽  
Vol 55 (11) ◽  
pp. 1250-1260 ◽  
Author(s):  
Gregor Kölsch ◽  
Corinna Matz-Grund ◽  
Bo V. Pedersen

Intracellular bacterial symbionts are known from various insect groups, particularly from those feeding on unbalanced diets, where the bacteria provide essential nutrients to the host. In the case of reed beetles (Coleoptera: Chrysomelidae, Donaciinae), however, the endosymbionts appear to be associated with specialized “glands” that secrete a material used for the beetles’ unusual water-tight cocoon. These glands were discovered over a century ago, but the bacteria they contain have yet to be characterized and placed in a phylogenetic context. Here, we describe the ultrastructure of two endosymbiotic species (“ Candidatus Macropleicola appendiculatae” and “ Candidatus Macropleicola muticae”) that reside in cells of the Malpighian tubules of the reed beetle species Macroplea appendiculata and Macroplea mutica , respectively. Fluorescent in situ hybridization using oligonucleotides targeting the 16S rRNA gene specific to Macroplea symbionts verified the localization of the symbionts in these organs. Phylogenetic analysis of 16S rRNA placed “Candidatus Macropleicola” in a clade of typically endosymbiotic Enterobacteriaceae (γ-proteobacteria). Finally, we discuss the evidence available for the hypothesis that the beetle larvae use a secretion produced by the bacteria for the formation of an underwater cocoon.


2021 ◽  
Author(s):  
◽  
Scott Anthony Lawrence

<p>Many echinoderms contain sub-cuticular bacteria (SCB), symbionts which reside in the lumen between the epidermal cells and the outer cuticle of the host. The relationship is very common, with ~60% of all echinoderms studied so far containing SCB. Currently, little is known about the function of the symbiosis, although it has been hypothesized that SCB may aid in host nutrition or antimicrobial defense. Whatever their function, the large numbers of SCB observed in many echinoderms (10 (to the power of 8) - 10 (to the power of 9) SCB g-1 AFDW host tissue) suggest that they may be important to the host. Factors contributing to the lack of knowledge about the echinoderm-SCB symbiosis include the difficulty associated with cultivating symbiotic bacteria, and the lack of studies identifying the SCB by molecular means. In this study, molecular techniques were employed to characterize the SCB of several common New Zealand echinoderms. The specific objectives of the study were to identify the SCB through sequencing of a region of the bacterial 16S rRNA gene, identify and locate SCB in situ through the use of fluorescence in situ hybridization (FISH), and cultivate SCB obtained from those echinoderms which were found to contain them. Phylogenetic analysis of 16S rRNA sequences obtained from echinoderm-associated bacteria resulted in the identification of four putative species of SCB. All four bacteria were isolated from samples of Stichopus mollis (class Holothuroidea), and two of the four were also found in samples of Patiriella sp (class Asteroidea). The first putative SCB belongs to the order Rhizobiales (a-proteobacteria), and is closely related to the SCB previously isolated from the brittle star Ophiactis balli. The second species belongs to the order Chromatiales (y-proteobacteria). Putative SCB species 3 falls within the Roseobacter clade (a-proteobacteria). The phylogenetic placement of the final putative SCB is more ambiguous, as this bacterium falls among members of the a- and y- subdivisions of the phylum Proteobacteria. The nearest relatives of this final bacterium are in the orders Rickettsiales and Thiotrichales. Results of FISH assays show that Patiriella sp. and S. mollis contain SCB, while a third species, Astrostole scabra (class Asteroidea) does not. The SCB community composition was found to vary between Patiriella sp. and S. mollis. In both species, the majority of the SCB present were found to belong to the a-subdivision of the phylum Proteobacteria (>80% in both species). However, in S. mollis, ~20% of the SCB community consists of bacteria belonging to the y-subdivision of the phylum Proteobacteria, whereas bacteria belonging to this subdivision were never observed in Patiriella sp. Cultivation experiments were carried out using a range of culture media, however results were inconclusive. Ten species of proteobacteria were successfully cultivated, three of which were obtained only from Patiriella sp. and S. mollis samples and were considered possible candidates for SCB. However, phylogenetic analysis of these three bacteria revealed that closely-related bacteria are predominantly free-living species. While the possibility remains that these three bacteria are in fact SCB, it seems more likely that they represent seawater or echinoderm surface-associated bacteria. This study contributes to the body of knowledge of the echinoderm-SCB symbiosis by identifying several potential SCB in Patiriella sp. and S. mollis, and is the first to identify SCB in situ through the use of FISH. An obvious goal in studies of the echinoderm-SCB symbiosis is to determine the function of the relationship. Potential functions of the symbiosis, based on the results obtained here, are discussed herein.</p>


2014 ◽  
Vol 64 (Pt_8) ◽  
pp. 2682-2687 ◽  
Author(s):  
Shi-Kai Deng ◽  
Xiao-Mei Ye ◽  
Cui-Wei Chu ◽  
Jin Jiang ◽  
Jian He ◽  
...  

A Gram-stain-positive, rod-shaped, non-motile, non-spore-forming, aerobic bacterial strain, designated BUT-2T, was isolated from activated sludge of one herbicide-manufacturing wastewater-treatment facility in Kunshan, Jiangsu province, China, and subjected to polyphasic taxonomic studies. Analysis of the 16S rRNA gene sequence indicated that strain BUT-2T shared the highest similarity with Chryseomicrobium amylolyticum (98.98 %), followed by Chryseomicrobium imtechense (98.88 %), with less than 96 % similarlity to members of the genera Paenisporosarcina , Planococcus , Sporosarcina and Planomicrobium . Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain BUT-2T clustered with C. amylolyticum JC16T and C. imtechense MW10T, occupying a distinct phylogenetic position. The major fatty acid (>10 % of total fatty acids) type of strain BUT-2T was iso-C15 : 0. The quinone system comprised menaquinone MK-7 (77.8 %), MK-6 (11.9 %) and MK-8 (10.3 %). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and some unidentified phospholipids. The cell-wall peptidoglycan type of strain BUT-2T was l-Orn-d-Glu. The genomic DNA G+C content of strain BUT-2T was 48.5 mol%. Furthermore, the DNA–DNA relatedness in hybridization experiments against the reference strain was lower than 70 %, confirming that strain BUT-2T did not belong to previously described species of the genus Chryseomicrobium . On the basis of its morphological, physiological and chemotaxonomic characteristics as well as phylogenetic analysis, strain BUT-2T is considered to represent a novel species of the genus Chryseomicrobium , for which the name Chryseomicrobium aureum sp. nov. is proposed. The type strain is BUT-2T ( = CCTCC AB2013082T = KACC 17219T).


2010 ◽  
Vol 60 (12) ◽  
pp. 2887-2897 ◽  
Author(s):  
I.-M. Lee ◽  
K. D. Bottner-Parker ◽  
Y. Zhao ◽  
R. E. Davis ◽  
N. A. Harrison

The secY gene sequence is more variable than that of the 16S rRNA gene. Comparative phylogenetic analyses with 16S rRNA and secY gene sequences from 80 and 83 phytoplasma strains, respectively, were performed to assess the efficacy of these sequences for delineating phytoplasma strains within each 16Sr group. The phylogenetic interrelatedness among phytoplasma taxa inferred by secY gene-based phylogeny was nearly congruent with that inferred by 16S rRNA gene-based phylogeny. Phylogenetic analysis based on the secY gene permitted finer differentiation of phytoplasma strains, however. The secY gene-based phylogeny not only readily resolved 16Sr subgroups within a given 16Sr group, but also delineated distinct lineages irresolvable by 16S rRNA gene-based phylogeny. Such high resolving power makes the secY gene a more useful genetic marker than the 16S rRNA gene for finer differentiation of closely related phytoplasma strains based on RFLP analysis with selected restriction enzymes. Such strains were readily identified by collective secY RFLP patterns. The genetic interrelationships among these strains were determined by pattern similarity coefficients, which coincided with delineations by phylogenetic analysis. This study also revealed two heterogeneous spc operons present in the phytoplasma clade. This latter finding may have significant implications for phytoplasma evolution.


2009 ◽  
Vol 71 (12) ◽  
pp. 1677-1679 ◽  
Author(s):  
Makoto SATO ◽  
Ikuo NISHIZAWA ◽  
Masatoshi FUJIHARA ◽  
Takashi NISHIMURA ◽  
Kazuei MATSUBARA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document