scholarly journals Virgibacillus campisalis sp. nov., from a marine solar saltern

2012 ◽  
Vol 62 (2) ◽  
pp. 347-351 ◽  
Author(s):  
Soo-Young Lee ◽  
Chul-Hyung Kang ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-staining-variable, motile, endospore-forming and rod-shaped bacterial strain, IDS-20T, was isolated from a marine solar saltern in Korea and subjected to a polyphasic taxonomic investigation. Strain IDS-20T grew optimally at 37 °C, at pH 7.5–8.0 and in the presence of 4–5 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain IDS-20T belongs to the genus Virgibacillus. Strain IDS-20T exhibited 93.4–96.6 % 16S rRNA gene sequence similarity to the type strains of species of the genus Virgibacillus. Strain IDS-20T had MK-7 as the predominant menaquinone and a cell-wall peptidoglycan based on meso-diaminopimelic acid. The major fatty acids were anteiso-C15 : 0 and anteiso-C17 : 0 and major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and two unidentified phospholipids. The DNA G+C content was 39.5 mol%. The phylogenetic distinctiveness and differential phenotypic characteristics of strain IDS-20T demonstrated that this strain can be distinguished from recognized species of the genus Virgibacillus. On the basis of the data presented, strain IDS-20T represents a novel species of the genus Virgibacillus, for which the name Virgibacillus campisalis sp. nov. is proposed. The type strain is IDS-20T ( = KCTC 13727T  = CCUG 59308T).

2007 ◽  
Vol 57 (9) ◽  
pp. 2102-2105 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Mi-Hwa Lee ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-negative, motile, rod-shaped, Marinobacter-like bacterial strain, ISL-40T, was isolated from a marine solar saltern of the Yellow Sea in Korea. The taxonomic position of the novel strain was investigated using a polyphasic approach. Strain ISL-40T grew optimally at pH 7.0–8.0 and at 30 °C. It contained Q-9 as the predominant ubiquinone. The major fatty acids were C16 : 0, C16 : 1 ω7c and/or iso-C15 : 0 2-OH and 10-methyl C16 : 0. The DNA G+C content was 58.1 mol%. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISL-40T belongs to the genus Marinobacter. Strain ISL-40T exhibited 16S rRNA gene sequence similarity values of 93.5–96.4 % to the type strains of recognized Marinobacter species. The differential phenotypic properties and phylogenetic distinctiveness of strain ISL-40T revealed that it is separate from recognized Marinobacter species. On the basis of phenotypic, phylogenetic and genetic data, therefore, strain ISL-40T represents a novel species of the genus Marinobacter, for which the name Marinobacter salicampi sp. nov. is proposed. The type strain is ISL-40T (=KCTC 12972T=CCUG 54357T).


2010 ◽  
Vol 60 (2) ◽  
pp. 434-438 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Yong-Taek Jung ◽  
Mi-Hwa Lee ◽  
Tae-Kwang Oh

A Gram-stain-positive, motile, rod-shaped bacterial strain, ISL-17T, was isolated from a marine solar saltern of the Yellow Sea, Korea, and its taxonomic position was investigated by means of a polyphasic study. Strain ISL-17T grew optimally at pH 8.5–9.0, at 37 °C and in the presence of approximately 10 % (w/v) NaCl. It contained meso-diaminopimelic acid as the diagnostic diamino acid in the peptidoglycan, MK-7 as the predominant menaquinone and iso-C15 : 0, anteiso-C15 : 0 and iso-C16 : 0 as the major fatty acids. The DNA G+C content was 48.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISL-17T fell within the genus Alkalibacillus, clustering with Alkalibacillus salilacus BH163T with a bootstrap resampling value of 100 %. Strain ISL-17T exhibited 98.2 % 16S rRNA gene sequence similarity to A. salilacus BH163T and 95.8–96.5 % similarity to the type strains of the other Alkalibacillus species. The mean DNA–DNA relatedness value between strain ISL-17T and A. salilacus KCTC 3916T was 19 %. The phenotypic properties of strain ISL-17T, together with its phylogenetic and genetic distinctiveness, enable this strain to be differentiated from recognized Alkalibacillus species. On the basis of phenotypic, phylogenetic and genetic data, strain ISL-17T represents a novel species within the genus Alkalibacillus, for which the name Alkalibacillus flavidus sp. nov. is proposed; the type strain is ISL-17T (=KCTC 13258T =CCUG 56753T).


2007 ◽  
Vol 57 (10) ◽  
pp. 2365-2369 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Seo-Youn Jung ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-negative, non-motile, rod-shaped, Microbulbifer-like bacterial strain, ISL-39T, was isolated from a marine solar saltern of the Yellow Sea in Korea and was subjected to a polyphasic taxonomic investigation. Strain ISL-39T grew optimally at pH 7.0–8.0 and 37 °C. It contained Q-8 as the predominant ubiquinone and iso-C15 : 0, C16 : 0 and iso-C17 : 0 as the major fatty acids. The DNA G+C content was 57.7 mol%. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISL-39T belonged to the genus Microbulbifer. Strain ISL-39T exhibited 16S rRNA gene sequence similarity values of 94.7–97.5 % with respect to the type strains of four recognized Microbulbifer species. DNA–DNA relatedness data and the differential phenotypic properties and phylogenetic distinctiveness of ISL-39T make this strain distinguishable from the recognized Microbulbifer species. On the basis of the phenotypic, phylogenetic and genetic data, strain ISL-39T represents a novel species of the genus Microbulbifer, for which the name Microbulbifer celer sp. nov. is proposed. The type strain is ISL-39T (=KCTC 12973T=CCUG 54356T).


2010 ◽  
Vol 60 (12) ◽  
pp. 2758-2762 ◽  
Author(s):  
Soo-Young Lee ◽  
Tae-Kwang Oh ◽  
Wonyong Kim ◽  
Jung-Hoon Yoon

A Gram-stain-variable, motile, moderately halophilic bacterial strain, CHL-21T, was isolated from a marine solar saltern and its taxonomic position was investigated using a polyphasic approach. Optimal growth of strain CHL-21T occurred at 30–37 °C, at pH 7.0–7.5 and in the presence of 5–10 % (w/v) NaCl. In phylogenetic trees based on 16S rRNA gene sequences, strain CHL-21T fell within the cluster comprising members of the genera Oceanobacillus, Ornithinibacillus and Paucisalibacillus. Strain CHL-21T exhibited 97.1–97.2 % 16S rRNA gene sequence similarity to the type strains of the two subspecies of Oceanobacillus oncorhynchi and 92.0–94.7 % 16S rRNA gene sequence similarity to the type strains of other members of the genus Oceanobacillus and members of the genera Ornithinibacillus and Paucisalibacillus. Mean DNA–DNA reassociation values between strain CHL-21T and the type strains of the two subspecies of Oceanobacillus oncorhynchi were 19–21 %. The cell-wall peptidoglycan of strain CHL-21T was based on meso-diaminopimelic acid, MK-7 was the predominant menaquinone, and anteiso-C15 : 0 and anteiso-C17 : 0 were the major fatty acids. The DNA G+C content was 39.8 mol%. Differential phenotypic properties, including facultatively anaerobic growth and acid production from substrates, together with its phylogenetic and genetic distinctiveness, demonstrated that strain CHL-21T is distinguishable from recognized Oceanobacillus species. On the basis of data presented, strain CHL-21T represents a novel species within the genus Oceanobacillus, for which the name Oceanobacillus locisalsi sp. nov. is proposed; the type strain is CHL-21T (=KCTC 13253T =CCUG 56608T).


2007 ◽  
Vol 57 (12) ◽  
pp. 2738-2742 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Seo-Youn Jung ◽  
So-Jung Kang ◽  
Yong-Taek Jung ◽  
Tae-Kwang Oh

A Gram-negative, non-motile, rod-shaped bacterium, strain ISL-6T, phenotypically resembling members of the genus Salegentibacter, was isolated from a marine solar saltern of the Yellow Sea in Korea and subjected to a polyphasic taxonomic investigation. Strain ISL-6T grew optimally at pH 7.0–8.0 and 30 °C and in the presence of 8 % (w/v) NaCl. It contained MK-6 as the predominant menaquinone. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The DNA G+C content was 37.5 mol%. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISL-6T belonged to the genus Salegentibacter. Strain ISL-6T exhibited 16S rRNA gene sequence similarity values of 92.0–98.6 % with respect to the type strains of recognized Salegentibacter species. Low DNA–DNA relatedness values, differential phenotypic properties and phylogenetic distinctiveness demonstrated that strain ISL-6T is distinguishable from the recognized Salegentibacter species. Therefore strain ISL-6T represents a novel species of the genus Salegentibacter, for which the name Salegentibacter salarius sp. nov. is proposed. The type strain is ISL-6T (=KCTC 12974T =CCUG 54355T).


2005 ◽  
Vol 55 (6) ◽  
pp. 2413-2417 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Choong-Hwan Lee ◽  
Hyun Woo Oh ◽  
Tae-Kwang Oh

A Gram-positive or Gram-variable, motile, endospore-forming, halophilic bacterial strain, MSS-402T, was isolated from a marine solar saltern in Korea, and subjected to a polyphasic taxonomic study. Some cells of strain MSS-402T were long filamentous rods. The isolate grew optimally at 37 °C and in the presence of 3–5 % (w/v) NaCl. Strain MSS-402T had cell-wall peptidoglycan based on l-orn–d-Asp, MK-7 as the predominant menaquinone and anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0 as major fatty acids. The DNA G+C content was 42·9 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain MSS-402T falls within the evolutionary radiation of species of the genus Halobacillus. Levels of 16S rRNA gene sequence similarity between strain MSS-402T and the type strains of recognized Halobacillus species ranged from 98·0 % (with Halobacillus halophilus) to 99·2 % (with Halobacillus litoralis and Halobacillus trueperi). Levels of DNA–DNA binding indicated that strain MSS-402T represents a genomic species that is distinct from recognized Halobacillus species. Strain MSS-402T was differentiated from Halobacillus species by means of several phenotypic characteristics. On the basis of its phenotypic properties and phylogenetic and genetic distinctiveness, strain MSS-402T (=KCTC 3957T=DSM 17110T) should be classified as the type strain of a novel Halobacillus species, for which the name Halobacillus yeomjeoni sp. nov. is proposed.


2010 ◽  
Vol 60 (4) ◽  
pp. 754-758 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Soo-Young Lee ◽  
Ki-Hoon Oh ◽  
Tae-Kwang Oh

A Gram-positive, non-motile and coccoid-, short rod- or rod-shaped bacterial strain, ISL-16T, was isolated from a marine solar saltern in Korea and its taxonomic position was investigated using a polyphasic taxonomic approach. Strain ISL-16T grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 2 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISL-16T joined the cluster comprising species of the genus Planococcus. Its 16S rRNA gene sequence contained the same signature nucleotides as those defined for the genus Planococcus. Strain ISL-16T exhibited 16S rRNA gene sequence similarity values of 96.9–98.2 % to the type strains of species of the genus Planococcus. Strain ISL-16T contained MK-8 and MK-7 as the predominant menaquinones and anteiso-C15 : 0, C16 : 1 ω7c alcohol and anteiso-C17 : 0 as the major fatty acids. The DNA G+C content was 48.3 mol%. DNA–DNA relatedness values between strain ISL-16T and the type strains of species of the genus Planococcus were 15–28 %. Differential phenotypic properties, together with its phylogenetic and genetic distinctiveness, enabled strain ISL-16T to be differentiated from recognized species of the genus Planococcus. On the basis of the data presented, strain ISL-16T is considered to represent a novel species of the genus Planococcus, for which the name Planococcus salinarum sp. nov. is proposed. The type strain is ISL-16T (=KCTC 13584T=CCUG 57753T). An emended description of the genus Planococcus is also given.


Author(s):  
Ho-Won Chang ◽  
Young-Do Nam ◽  
Hyuk-Yong Kwon ◽  
Ja Ryeong Park ◽  
Jung-Sook Lee ◽  
...  

A moderately halophilic, aerobic, Gram-negative bacterium was isolated from a tidal flat area of Dae-Chun, Chung-Nam, Korea. The strain, designated mano11T, comprised rod-shaped cells that were motile by means of polar flagella. It grew with 3–12 % NaCl and at 4–37 °C and pH 5.3–9.3. The predominant menaquinone present in this strain was MK-7 and diaminopimelic acid was not found in the cell-wall peptidoglycan. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain mano11T belongs to the genus Marinobacterium. Strain mano11T exhibited 92.8–98.3 % 16S rRNA gene sequence similarity when compared with the type strains of three other species of the genus Marinobacterium. DNA–DNA hybridization between strain mano11T and Marinobacterium georgiense DSM 11526T, its closest relative in terms of 16S rRNA gene sequence similarity, was 13 %. On the basis of the phenotypic, genetic and phylogenetic data, strain mano11T represents a novel species of the genus Marinobacterium, for which the name Marinobacterium halophilum sp. nov. is proposed. The type strain is mano11T (=KCTC 12240T=DSM 17586T).


2010 ◽  
Vol 60 (7) ◽  
pp. 1548-1553 ◽  
Author(s):  
A. Imran ◽  
F. Y. Hafeez ◽  
A. Frühling ◽  
P. Schumann ◽  
K. A. Malik ◽  
...  

A Gram-staining-negative, aerobic, rod-shaped, non-spore-forming bacterial strain, Ca-34T, was isolated from nodules of chickpea (Cicer arietinum) in Pakistan and studied for its taxonomic affiliation. The almost full-length 16S rRNA gene sequence showed highest similarities to those of strains of the genus Ochrobactrum. Based on results of MALDI-TOF MS and 16S rRNA gene sequence similarity (98.6 %), strain Ca-34T and Ochrobactrum intermedium LMG 3301T are phylogenetic neighbours; the two strains shared DNA–DNA relatedness of 64 %. The fatty acid profile [predominantly C18 : 1 ω7c (67.7 %) and C19 : 0 cyclo ω8c (19.6 %)] also supported the genus affiliation. Metabolically, strain Ca-34T differed from other type strains of Ochrobactrum in many reactions and from all type strains in testing positive for gelatin hydrolysis and in testing negative for assimilation of alaninamide and l-threonine. Based on phenotypic and genotypic data, we conclude that strain Ca-34T represents a novel species, for which we propose the name Ochrobactrum ciceri sp. nov. (type strain Ca-34T =DSM 22292T =CCUG 57879T).


2005 ◽  
Vol 55 (3) ◽  
pp. 1027-1031 ◽  
Author(s):  
Jee-Min Lim ◽  
Che Ok Jeon ◽  
Dong-Jin Park ◽  
Hye-Ryoung Kim ◽  
Byoung-Jun Yoon ◽  
...  

A moderately halophilic, Gram-positive, rod-shaped bacterium (BH030004T) was isolated from a solar saltern in Korea. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain BH030004T belonged to the genus Pontibacillus. Chemotaxonomic data (DNA G+C content, 42 mol%; major isoprenoid quinone, MK-7; cell-wall type, A1γ-type meso-diaminopimelic acid; major fatty acids, iso-C15 : 0 and anteiso-C15 : 0) also supported the affiliation of the isolate to the genus Pontibacillus. Although the 16S rRNA gene sequence similarity between strain BH030004T and Pontibacillus chungwhensis DSM 16287T was relatively high (99·1 %), physiological properties and DNA–DNA hybridization (about 7 % DNA–DNA relatedness) allowed genotypic and phenotypic differentiation of strain BH030004T from the type strain of P. chungwhensis. Therefore, strain BH030004T represents a novel species of the genus Pontibacillus, for which the name Pontibacillus marinus sp. nov. is proposed. The type strain is BH030004T (=KCTC 3917T=DSM 16465T).


Sign in / Sign up

Export Citation Format

Share Document