scholarly journals Halobacillus yeomjeoni sp. nov., isolated from a marine solar saltern in Korea

2005 ◽  
Vol 55 (6) ◽  
pp. 2413-2417 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Choong-Hwan Lee ◽  
Hyun Woo Oh ◽  
Tae-Kwang Oh

A Gram-positive or Gram-variable, motile, endospore-forming, halophilic bacterial strain, MSS-402T, was isolated from a marine solar saltern in Korea, and subjected to a polyphasic taxonomic study. Some cells of strain MSS-402T were long filamentous rods. The isolate grew optimally at 37 °C and in the presence of 3–5 % (w/v) NaCl. Strain MSS-402T had cell-wall peptidoglycan based on l-orn–d-Asp, MK-7 as the predominant menaquinone and anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0 as major fatty acids. The DNA G+C content was 42·9 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain MSS-402T falls within the evolutionary radiation of species of the genus Halobacillus. Levels of 16S rRNA gene sequence similarity between strain MSS-402T and the type strains of recognized Halobacillus species ranged from 98·0 % (with Halobacillus halophilus) to 99·2 % (with Halobacillus litoralis and Halobacillus trueperi). Levels of DNA–DNA binding indicated that strain MSS-402T represents a genomic species that is distinct from recognized Halobacillus species. Strain MSS-402T was differentiated from Halobacillus species by means of several phenotypic characteristics. On the basis of its phenotypic properties and phylogenetic and genetic distinctiveness, strain MSS-402T (=KCTC 3957T=DSM 17110T) should be classified as the type strain of a novel Halobacillus species, for which the name Halobacillus yeomjeoni sp. nov. is proposed.

2007 ◽  
Vol 57 (9) ◽  
pp. 2102-2105 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Mi-Hwa Lee ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-negative, motile, rod-shaped, Marinobacter-like bacterial strain, ISL-40T, was isolated from a marine solar saltern of the Yellow Sea in Korea. The taxonomic position of the novel strain was investigated using a polyphasic approach. Strain ISL-40T grew optimally at pH 7.0–8.0 and at 30 °C. It contained Q-9 as the predominant ubiquinone. The major fatty acids were C16 : 0, C16 : 1 ω7c and/or iso-C15 : 0 2-OH and 10-methyl C16 : 0. The DNA G+C content was 58.1 mol%. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISL-40T belongs to the genus Marinobacter. Strain ISL-40T exhibited 16S rRNA gene sequence similarity values of 93.5–96.4 % to the type strains of recognized Marinobacter species. The differential phenotypic properties and phylogenetic distinctiveness of strain ISL-40T revealed that it is separate from recognized Marinobacter species. On the basis of phenotypic, phylogenetic and genetic data, therefore, strain ISL-40T represents a novel species of the genus Marinobacter, for which the name Marinobacter salicampi sp. nov. is proposed. The type strain is ISL-40T (=KCTC 12972T=CCUG 54357T).


2007 ◽  
Vol 57 (10) ◽  
pp. 2365-2369 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Seo-Youn Jung ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-negative, non-motile, rod-shaped, Microbulbifer-like bacterial strain, ISL-39T, was isolated from a marine solar saltern of the Yellow Sea in Korea and was subjected to a polyphasic taxonomic investigation. Strain ISL-39T grew optimally at pH 7.0–8.0 and 37 °C. It contained Q-8 as the predominant ubiquinone and iso-C15 : 0, C16 : 0 and iso-C17 : 0 as the major fatty acids. The DNA G+C content was 57.7 mol%. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISL-39T belonged to the genus Microbulbifer. Strain ISL-39T exhibited 16S rRNA gene sequence similarity values of 94.7–97.5 % with respect to the type strains of four recognized Microbulbifer species. DNA–DNA relatedness data and the differential phenotypic properties and phylogenetic distinctiveness of ISL-39T make this strain distinguishable from the recognized Microbulbifer species. On the basis of the phenotypic, phylogenetic and genetic data, strain ISL-39T represents a novel species of the genus Microbulbifer, for which the name Microbulbifer celer sp. nov. is proposed. The type strain is ISL-39T (=KCTC 12973T=CCUG 54356T).


2007 ◽  
Vol 57 (12) ◽  
pp. 2738-2742 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Seo-Youn Jung ◽  
So-Jung Kang ◽  
Yong-Taek Jung ◽  
Tae-Kwang Oh

A Gram-negative, non-motile, rod-shaped bacterium, strain ISL-6T, phenotypically resembling members of the genus Salegentibacter, was isolated from a marine solar saltern of the Yellow Sea in Korea and subjected to a polyphasic taxonomic investigation. Strain ISL-6T grew optimally at pH 7.0–8.0 and 30 °C and in the presence of 8 % (w/v) NaCl. It contained MK-6 as the predominant menaquinone. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The DNA G+C content was 37.5 mol%. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISL-6T belonged to the genus Salegentibacter. Strain ISL-6T exhibited 16S rRNA gene sequence similarity values of 92.0–98.6 % with respect to the type strains of recognized Salegentibacter species. Low DNA–DNA relatedness values, differential phenotypic properties and phylogenetic distinctiveness demonstrated that strain ISL-6T is distinguishable from the recognized Salegentibacter species. Therefore strain ISL-6T represents a novel species of the genus Salegentibacter, for which the name Salegentibacter salarius sp. nov. is proposed. The type strain is ISL-6T (=KCTC 12974T =CCUG 54355T).


2010 ◽  
Vol 60 (2) ◽  
pp. 434-438 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Yong-Taek Jung ◽  
Mi-Hwa Lee ◽  
Tae-Kwang Oh

A Gram-stain-positive, motile, rod-shaped bacterial strain, ISL-17T, was isolated from a marine solar saltern of the Yellow Sea, Korea, and its taxonomic position was investigated by means of a polyphasic study. Strain ISL-17T grew optimally at pH 8.5–9.0, at 37 °C and in the presence of approximately 10 % (w/v) NaCl. It contained meso-diaminopimelic acid as the diagnostic diamino acid in the peptidoglycan, MK-7 as the predominant menaquinone and iso-C15 : 0, anteiso-C15 : 0 and iso-C16 : 0 as the major fatty acids. The DNA G+C content was 48.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISL-17T fell within the genus Alkalibacillus, clustering with Alkalibacillus salilacus BH163T with a bootstrap resampling value of 100 %. Strain ISL-17T exhibited 98.2 % 16S rRNA gene sequence similarity to A. salilacus BH163T and 95.8–96.5 % similarity to the type strains of the other Alkalibacillus species. The mean DNA–DNA relatedness value between strain ISL-17T and A. salilacus KCTC 3916T was 19 %. The phenotypic properties of strain ISL-17T, together with its phylogenetic and genetic distinctiveness, enable this strain to be differentiated from recognized Alkalibacillus species. On the basis of phenotypic, phylogenetic and genetic data, strain ISL-17T represents a novel species within the genus Alkalibacillus, for which the name Alkalibacillus flavidus sp. nov. is proposed; the type strain is ISL-17T (=KCTC 13258T =CCUG 56753T).


2012 ◽  
Vol 62 (2) ◽  
pp. 347-351 ◽  
Author(s):  
Soo-Young Lee ◽  
Chul-Hyung Kang ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-staining-variable, motile, endospore-forming and rod-shaped bacterial strain, IDS-20T, was isolated from a marine solar saltern in Korea and subjected to a polyphasic taxonomic investigation. Strain IDS-20T grew optimally at 37 °C, at pH 7.5–8.0 and in the presence of 4–5 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain IDS-20T belongs to the genus Virgibacillus. Strain IDS-20T exhibited 93.4–96.6 % 16S rRNA gene sequence similarity to the type strains of species of the genus Virgibacillus. Strain IDS-20T had MK-7 as the predominant menaquinone and a cell-wall peptidoglycan based on meso-diaminopimelic acid. The major fatty acids were anteiso-C15 : 0 and anteiso-C17 : 0 and major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and two unidentified phospholipids. The DNA G+C content was 39.5 mol%. The phylogenetic distinctiveness and differential phenotypic characteristics of strain IDS-20T demonstrated that this strain can be distinguished from recognized species of the genus Virgibacillus. On the basis of the data presented, strain IDS-20T represents a novel species of the genus Virgibacillus, for which the name Virgibacillus campisalis sp. nov. is proposed. The type strain is IDS-20T ( = KCTC 13727T  = CCUG 59308T).


2007 ◽  
Vol 57 (2) ◽  
pp. 332-336 ◽  
Author(s):  
Seo-Youn Jung ◽  
Yong-Taek Jung ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-negative, motile, pale-yellow-pigmented, oval-shaped bacterial strain, DF-42T, was isolated from a tidal flat sediment in Korea. Strain DF-42T grew optimally at 25–30 °C and in the presence of 2–3 % (w/v) NaCl. It contained Q-8 as the predominant ubiquinone and C16 : 0, C18 : 1 ω7c and summed feature 3 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH) as the major fatty acids. The DNA G+C content was 48.3 mol%. Phylogenetic trees based on 16S rRNA gene sequences showed that strain DF-42T falls within the evolutionary radiation enclosed by the genus Photobacterium. Strain DF-42T exhibited 16S rRNA gene sequence similarity values of 93.8–97.9 % to the type strains of Photobacterium species with validly published names. DNA–DNA relatedness data and differential phenotypic properties made it possible to categorize strain DF-42T as representing a species that is separate from previously described Photobacterium species. The name Photobacterium lutimaris sp. nov. is proposed, with strain DF-42T (=KCTC 12723T=JCM 13586T) as the type strain.


2011 ◽  
Vol 61 (12) ◽  
pp. 2880-2884 ◽  
Author(s):  
Won-Chan Choi ◽  
So-Jung Kang ◽  
Yong-Taek Jung ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-stain-negative, motile, non-spore-forming and short rod- or rod-shaped bacterial strain, T-w6T, was isolated from seawater of an oyster farm in the South Sea, Korea. Strain T-w6T grew optimally at 25 °C and in the presence of 2 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain T-w6T joined the cluster comprising Oceanisphaera species with a bootstrap resampling value of 90.8 %, and this cluster joined the clade comprising members of the genera Oceanimonas and Zobellella with a bootstrap resampling value of 100 %. Strain T-w6T exhibited 16S rRNA gene sequence similarity of 95.9 and 96.6 % to the type strains of Oceanisphaera litoralis and Oceanisphaera donghaensis, respectively. Strain T-w6T and the type strains of Oceanisphaera litoralis and Oceanisphaera donghaensis had Q-8 as the predominant ubiquinone and iso-C15 : 0 2-OH and/or C16 : 1ω7c, C18 : 1ω7c and C16 : 0 as the major fatty acids. The major polar lipids were phosphatidylglycerol and phosphatidylethanolamine. The DNA G+C content of strain T-w6T was 56.6 mol%. Mean DNA–DNA relatedness of strain T-w6T with Oceanisphaera litoralis DSM 15406T and Oceanisphaera donghaensis KCTC 12522T was 13 and 10 %, respectively. Phenotypic properties of strain T-w6T demonstrated that this strain could be distinguished from the other Oceanisphaera species. On the basis of the data presented, strain T-w6T is considered to represent a novel species of the genus Oceanisphaera, for which the name Oceanisphaera ostreae sp. nov. is proposed; the type strain is T-w6T ( = KCTC 23422T  = CCUG 60525T). An emended description of the genus Oceanisphaera is also presented.


2004 ◽  
Vol 54 (4) ◽  
pp. 1317-1321 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
In-Gi Kim ◽  
Peter Schumann ◽  
Tae-Kwang Oh ◽  
Yong-Ha Park

A Gram-positive, motile, round to ellipsoidal, endospore-forming, rod-shaped bacterial strain, SF-57T, was isolated from a marine solar saltern in Korea. This organism grew between 4 and 39 °C, with optimum growth at 30 °C. Strain SF-57T grew in the presence of 0·5–15·0 % NaCl, with optimum growth at 2–3 % NaCl. The peptidoglycan type of strain SF-57T was A1α linked directly through l-Lys. In strain SF-57T, menaquinone-7 (MK-7) was the predominant isoprenoid quinone and anteiso-C15 : 0 was the major fatty acid. The DNA G+C content was 41·8 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain SF-57T formed a coherent cluster with Marinibacillus marinus, with a bootstrap resampling value of 100 %. The level of 16S rRNA gene sequence similarity between strain SF-57T and M. marinus DSM 1297T was 98·9 %. The mean DNA–DNA relatedness level between strain SF-57T and the type strain of M. marinus was 20·6 %. Based on phenotypic properties, phylogenetic analyses and genomic data, strain SF-57T merits placement in the genus Marinibacillus as a representative of a novel species, for which the name Marinibacillus campisalis sp. nov. is proposed. The type strain is SF-57T (=KCCM 41644T=JCM 11810T).


2011 ◽  
Vol 61 (7) ◽  
pp. 1549-1553 ◽  
Author(s):  
So-Jung Kang ◽  
Yong-Taek Jung ◽  
Ki-Hoon Oh ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, non-spore-forming bacterial strain, BDR-9T, was isolated from soil collected from Boryung on the west coast of the Korean peninsula, and its taxonomic position was investigated by using a polyphasic study. Strain BDR-9T grew optimally at 25 °C, at pH 6.0–7.5 and in the absence of NaCl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain BDR-9T fell within the clade comprising species of the genus Mucilaginibacter within the phylum Bacteroidetes. 16S rRNA gene sequence similarity values between strain BDR-9T and the type strains of species of the genus Mucilaginibacter were in the range 94.0–95.6 %. Strain BDR-9T contained MK-7 as the predominant menaquinone and iso-C15 : 0 and C16 : 1ω7c and/or iso-C15 : 0 2-OH as the major fatty acids. The DNA G+C content was 44.3 mol%. Differential phenotypic properties and phylogenetic distinctiveness of strain BDR-9T demonstrated that this strain is distinguishable from species of the genus Mucilaginibacter. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain BDR-9T is considered to represent a novel species of the genus Mucilaginibacter, for which the name Mucilaginibacter boryungensis sp. nov. is proposed. The type strain is BDR-9T ( = KCTC 23157T  = CCUG 59599T).


2012 ◽  
Vol 62 (Pt_3) ◽  
pp. 511-514 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Soo-Young Lee ◽  
Jung-Sook Lee ◽  
Tae-Kwang Oh

A Gram-stain-negative, non-motile, non-spore-forming bacterial strain, YCS-5T, was isolated from seawater off the southern coast of Korea. Strain YCS-5T grew optimally at 30 °C and in the presence of 2 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain YCS-5T fell within the clade comprising Kangiella species. Strain YCS-5T exhibited 16S rRNA gene sequence similarity values of 96.6, 95.7 and 97.9 % to the type strains of Kangiella koreensis, Kangiella aquimarina and Kangiella japonica, respectively, and less than 89.8 % to strains of other species used in the phylogenetic analysis. Strain YCS-5T contained Q-8 as the predominant ubiquinone and iso-C17 : 0, iso-C15 : 0, iso-C11 : 0 3-OH and iso-C17 : 1ω9c as the major fatty acids. The polar lipid profile of strain YCS-5T was similar to that of K. koreensis SW-125T, with phosphatidylglycerol and an unidentified aminolipid as major polar lipids. The DNA G+C content was 47 mol%. The mean DNA–DNA relatedness value between strain YCS-5T and K. japonica JCM 16211T was 12 %. Differential phenotypic properties and the phylogenetic and genetic distinctiveness of strain YCS-5T demonstrated that this strain is distinguishable from other Kangiella species. On the basis of the data presented, strain YCS-5T is considered to represent a novel species of the genus Kangiella, for which the name Kangiella geojedonensis sp. nov. is proposed; the type strain is YCS-5T ( = KCTC 23420T = CCUG 60526T).


Sign in / Sign up

Export Citation Format

Share Document