scholarly journals Vibrio xiamenensis sp. nov., a cellulase-producing bacterium isolated from mangrove soil

2012 ◽  
Vol 62 (Pt_8) ◽  
pp. 1958-1962 ◽  
Author(s):  
Zhao-Ming Gao ◽  
Jing Xiao ◽  
Xing-Na Wang ◽  
Ling-Wei Ruan ◽  
Xiu-Lan Chen ◽  
...  

A taxonomic study was carried out on a cellulase-producing bacterium, strain G21T, isolated from mangrove soil in Xiamen, Fujian province, China. Cells were Gram-negative, slightly curved rods, motile with a single polar flagellum. The strain grew at 15–40 °C and in 0.5–10 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain G21T belonged to the genus Vibrio and formed a clade with Vibrio furnissii ATCC 350116T (97.4 % sequence similarity), V. fluvialis LMG 7894T (97.1 %) and V. ponticus CECT 5869T (96.1 %). However, multilocus sequence analysis (using rpoA, recA, mreB, gapA, gyrB and pyrH sequences) and DNA–DNA hybridization experiments indicated that the strain was distinct from the closest related Vibrio species. Additionally, strain G21T could be differentiated from them phenotypically by the ability to grow in 10 % NaCl but not on TCBS plates, its enzyme activity spectrum, citrate utilization, oxidization of various carbon sources, hydrolysis of several substrates and its cellular fatty acid profile. The G+C content of the genomic DNA was 46.0 mol%. The major cellular fatty acids were summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH), C16 : 0 and C18 : 1ω7c. The major polar lipids were phosphatidylethanolamine and phosphatidylglycerol, with trace amounts of diphosphatidylglycerol. The predominant quinones were Q-8 and Q-7. Based on phylogenetic, phenotypic and chemotaxonomic characteristics and DNA–DNA hybridization analysis, it is concluded that strain G21T represents a novel species of the genus Vibrio , for which the name Vibrio xiamenensis sp. nov. is proposed. The type strain is G21T ( = DSM 22851T  = CGMCC 1.10228T).

2013 ◽  
Vol 63 (Pt_6) ◽  
pp. 2223-2228 ◽  
Author(s):  
S. Vishnuvardhan Reddy ◽  
S. Aspana ◽  
D. L. Tushar ◽  
Ch. Sasikala ◽  
Ch. V. Ramana

Two helical-shaped bacteria (strains JC133T and JC143), which stain Gram-negative, were isolated from an alkaline soda lake, Lonar, India. Both strains were obligate anaerobes, mesophilic and required halo-alkaline conditions for growth. Both strains were resistant to rifampicin and kanamycin, but sensitive to gentamicin, tetracycline, ampicillin and chloramphenicol. Both strains had phosphatidylglycerol (PG), diphosphotidylglycerol (DPG), glycolipid (GL) and four unidentified lipids (L1–4) as the major polar lipids. C18 : 1ω7c was the predominant cellular fatty acid with significant proportions of C16 : 0, C18 : 1ω9c, C14 : 0, C18 : 0, C16 : 1ω5c, C18 : 1ω5c and C20 : 1ω9c. The DNA G+C contents of strain JC131T and JC143 were 58.2 and 58.5 mol%, respectively, and the two strains showed DNA reassociation >85 % (based on DNA–DNA hybridization). Based on the 16S rRNA gene sequence analysis, both strains were identified as belonging to the genus Spirochaeta with Spirochaeta alkalica Z-7491T (99.6 % sequence similarity), Spirochaeta americana ASpG1T (99 %) and other members of the genus Spirochaeta (<93 %) as their closest phylogenetic neighbours. However, strain JC133T and JC143 displayed less than 53.5 % binding (based on DNA–DNA hybridization) with S. alkalica Z-7491T and S. americana ASpG1T. On the basis of physiological, biochemical, chemotaxonomic and molecular properties, strains JC133T and JC143 can be differentiated from other members of the genus Spirochaeta and represent a novel species of the genus Spirochaeta , for which the name Spirochaeta sphaeroplastigenens sp. nov. is proposed. The type strain is JC133T ( = KCTC 15220T = NBRC 109056T).


2013 ◽  
Vol 63 (Pt_10) ◽  
pp. 3829-3834 ◽  
Author(s):  
Seil Kim ◽  
Gyeongtaek Gong ◽  
Tai Hyun Park ◽  
Youngsoon Um

An obligately aerobic, chemoheterotrophic, mesophilic prosthecate bacterium, designated strain CGM1-3ENT, was isolated from the enrichment cultures of forest soil from Cheonggyesan Mountain, Republic of Korea. Cells were Gram-reaction-negative, motile rods (1.3–2.4 µm long by 0.30–0.75 µm wide) with single flagella. The strain grew at 10–37 °C (optimum 25–30 °C) and at pH 4.5–9.5 (optimum 5.0–7.0). The major cellular fatty acids were C16 : 0, C18 : 1ω7c 11-methyl, C12 : 1 3-OH and summed feature 8 (comprising C18 : 1ω7c/C18 : 1ω6c). The genomic DNA G+C content of strain CGM1-3ENT was 63.7 mol%. The closest phylogenetic neighbour to strain CGM1-3ENT was identified as Asticcacaulis biprosthecium DSM 4723T (97.2 % 16S rRNA gene sequence similarity) and the DNA–DNA hybridization value between strain CGM1-3ENT and A. biprosthecium DSM 4723T was less than 24.5 %. Strain CGM1-3ENT used d-glucose, d-fructose, sucrose, maltose, trehalose, d-mannose, d-mannitol, d-sorbitol, d-galactose, cellobiose, lactose, raffinose, fumarate, pyruvate, dl-alanine and glycerol as carbon sources. Based on data from the present polyphasic study, the forest soil isolate CGM1-3ENT is considered to represent a novel species of the genus Asticcacaulis , for which the name Asticcacaulis solisilvae sp. nov. is proposed. The type strain is CGM1-3ENT ( = AIM0088T = KCTC 32102T = JCM 18544T).


2015 ◽  
Vol 65 (Pt_3) ◽  
pp. 996-1002 ◽  
Author(s):  
Learn-Han Lee ◽  
Adzzie-Shazleen Azman ◽  
Nurullhudda Zainal ◽  
Wai-Fong Yin ◽  
Nurul-Syakima Ab Mutalib ◽  
...  

Strain MUSC 117T was isolated from mangrove soil of the Tanjung Lumpur forest in Pahang, Malaysia. This bacterium was yellowish-white pigmented, Gram-staining-positive, rod–coccus shaped and non-motile. On the basis of 16S rRNA gene sequence, strain MUSC 117T exhibited highest sequence similarity to Sinomonas atrocyanea DSM 20127T (98.0 %), Sinomonas albida LC13T (97.9 %) and Sinomonas soli CW 59T (97.8 %), and lower (<97.6 %) sequence similarity to other species of the genus Sinomonas . DNA–DNA hybridization experiments revealed a low level of DNA–DNA relatedness (less than 27 %) between strain MUSC 117T and closely related species. Chemotaxonomically, the peptidoglycan type was A3α, containing the amino acids lysine, serine, glycine, alanine, glutamic acid and muramic acid. The whole-cell sugars detected were rhamnose, ribose, glucose, galactose and a smaller amount of mannose. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and five unidentified glycolipids. The major fatty acids (>10.0 %) of the cell membrane were anteiso-C15 : 0 (39.4 %), C18 : 1ω7c (17.7 %), anteiso-C17 : 0 (17.2 %) and iso-C16 : 0 (11.4 %). The predominant respiratory quinones detected were MK-9(H2) and MK-9. The DNA G+C content was 67.3 mol%. A comparison of BOX-PCR fingerprints indicated that strain MUSC 117T represented a unique DNA profile. Results based on a polyphasic approach showed that strain MUSC 117T represents a novel species of the genus Sinomonas , for which the name Sinomonas humi sp. nov. is proposed. The type strain of Sinomonas humi sp. nov. is MUSC 117T ( = DSM 29362T = MCCC 1K00410T = NBRC 110653T).


2014 ◽  
Vol 64 (Pt_10) ◽  
pp. 3513-3519 ◽  
Author(s):  
Learn-Han Lee ◽  
Adzzie-Shazleen Azman ◽  
Nurullhudda Zainal ◽  
Shu-Kee Eng ◽  
Nurul-Syakima Ab Mutalib ◽  
...  

Strain MUSC 115T was isolated from mangrove soil of the Tanjung Lumpur river in the state of Pahang, Peninsular Malaysia. Cells of this strain stained Gram-positive and were non-spore-forming, short rods that formed yellowish-white colonies on different agar media. The taxonomy of strain MUSC 115T was studied by a polyphasic approach, and the organism showed a range of phylogenetic and chemotaxonomic properties consistent with those of the genus Microbacterium . The cell-wall peptidoglycan was of type B2β, containing the amino acids ornithine, alanine, glycine, glutamic acid and homoserine. The muramic acid was of the N-glycolyl form. The predominant menaquinones detected were MK-12, MK-13 and MK-11. The polar lipids consisted of phosphatidylglycerol, phosphoglycolipid, diphosphatidylglycerol, two unidentified lipids, three unidentified phospholipids and four unidentified glycolipids. The major fatty acids of the cell membrane were anteiso-C15 : 0 and anteiso-C17 : 0. The whole-cell sugars detected were ribose, glucose, mannose and galactose. Based on the 16S rRNA gene sequence, strain MUSC 115T showed the highest sequence similarity to Microbacterium immunditiarum SK 18T (98.1 %), M. ulmi XIL02T (97.8 %) and M. arborescens DSM 20754T (97.5 %) and lower sequence similarity to strains of other species of the genus Microbacterium . DNA–DNA hybridization experiments revealed a low level of DNA–DNA relatedness (less than 24 %) between strain MUSC 115T and the type strains of closely related species. Furthermore, BOX-PCR fingerprint comparison also indicated that strain MUSC 115T represented a unique DNA profile. The DNA G+C content determined was 70.9±0.7 mol%, which is lower than that of M. immunditiarum SK 18T. Based on the combination of genotypic and phenotypic data, it is proposed that strain MUSC 115T represents a novel species of the genus Microbacterium , for which the name Microbacterium mangrovi sp. nov. is proposed. The type strain is MUSC 115T ( = MCCC 1K00251T = DSM 28240T = NBRC 110089T).


Author(s):  
Juan Du ◽  
Yang Liu ◽  
Tao Pei ◽  
Ming-Rong Deng ◽  
Honghui Zhu

A novel Gram-stain-negative, aerobic and rod-shaped bacterial strain designated as 6D45AT was isolated from mangrove soil and characterized using a polyphasic taxonomic approach. Strain 6D45AT was found to grow at 10–37 °C (optimum, 28 °C), at pH 6.0–9.0 (optimum, 7.0) and in 0–5 % (w/v) NaCl (optimum, 2%). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 6D45AT fell into the genus Salipiger and shared 99.1 % identity with the closest type strain Salipiger pacificus CGMCC 1.3455T and less than 97.2 % identity with other type strains of this genus. The 34.8 % digital DNA–DNA hybridization (dDDH) and 88.3 % average nucleotide identity (ANI) values between strain 6D45AT and the closest relative above were well below recognized thresholds of 70 % DDH and 95–96 % ANI for species definition, implying that strain 6D45AT should represent a novel genospecies. The phylogenomic analysis indicated that strain 6D45AT formed an independent branch distinct from reference strains. The predominant cellular fatty acid of strain 6D45AT was summed feature 8 (C18 : 1  ω6c and/or C18 : 1  ω7c, 66.9 %); the polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, two unidentified aminolipids, two unidentified glycolipids and an unknown lipid; the respiratory quinone was Q-10. The genomic DNA G+C content was 66.5 mol %. Based on the phenotypic and genotypic characteristics, strain 6D45AT is concluded to represent a novel species of the genus Salipiger , for which the name Salipiger mangrovisoli sp. nov., is proposed. The type strain of the species is 6D45AT (=GDMCC 1.1960T=KCTC 82334T). We also propose the reclassification of Paraphaeobacter pallidus as Salipiger pallidus comb. nov. and ‘ Pelagibaca abyssi ’ as a species of the genus Salipiger .


2013 ◽  
Vol 63 (Pt_10) ◽  
pp. 3823-3828 ◽  
Author(s):  
Chokchai Kittiwongwattana ◽  
Chitti Thawai

A Gram-stain-negative, rod-shaped bacterium was isolated and designated strain L6-8T during a study of endophytic bacterial communities in lesser duckweed (Lemna aequinoctialis). Cells of strain L6-8T were motile with peritrichous flagella. The analysis of the nearly complete 16S rRNA gene sequence indicated that strain L6-8T was phylogenetically related to species of the genus Rhizobium . Its closest relatives were Rhizobium borbori DN316T (97.6 %), Rhizobium oryzae Alt 505T (97.3 %) and Rhizobium pseudoryzae J3-A127T (97.0 %). The sequence similarity analysis of housekeeping genes recA, glnII, atpD and gyrB showed low levels of sequence similarity (<91.5 %) between strain L6-8T and other species of the genus Rhizobium with validly published names. The pH range for growth was 4.0–9.0 (optimum 6.0–7.0), and the temperature range for growth was 20–45 °C (optimum 30 °C). Strain L6-8T tolerated NaCl up to 2 % (w/v) (optimum 1 % NaCl). The predominant components of cellular fatty acids were C19 : 0 cyclo ω8c (31.32 %), summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c; 25.39 %) and C16 : 0 (12.03 %). The DNA G+C content of strain L6-8T was 60.4 mol% (T m). nodC and nifH were not amplified in strain L6-8T. DNA–DNA relatedness between strain L6-8T and R. borbori DN316T, R. oryzae Alt505T and R. pseudoryzae J3-A127T was between 11.2 and 18.3 %. Based on the sequence similarity analyses, phenotypic, biochemical and physiological characteristics and DNA–DNA hybridization, strain L6-8T could be readily distinguished from its closest relatives and represents a novel species of the genus Rhizobium , for which the name Rhizobium paknamense sp. nov. is proposed. The type strain is L6-8T ( = NBRC 109338T = BCC 55142T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 867-872 ◽  
Author(s):  
Herbert Seiler ◽  
Mareike Wenning ◽  
Verena Schmidt ◽  
Siegfried Scherer

A novel Gram-staining-positive, rod-shaped, motile, strictly aerobic, endospore-forming bacterium, designated WCC 4585T, was isolated from a pharmaceutical production line. The organism grew optimally at 30 °C, at pH 8 and in the presence of 0.5 % (w/v) NaCl. Oval endospores were formed subterminally and terminally in swollen sporangia. The cell-wall diamino acid was meso-diaminopimelic acid (type A1γ) and the genomic DNA G+C content was 38.7 mol%. The major menaquinone was MK-7. The cellular fatty acid profile contained major amounts of iso-C15 : 0, anteiso-C15 : 0 and anteiso-C17 : 0, and the cellular phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and aminophospholipid. The isolate was most closely related to Bacillus oceanisediminis H2T, Bacillus infantis SMC 4352-1T, Bacillus firmus NCIMB 9366T, Bacillus circulans ATCC 4513T and Bacillus horneckiae DSM 23495T with which it shared less than 98.0 % 16S rRNA gene sequence similarity. DNA–DNA relatedness values between strain WCC 4585T and five type strains of related species were ≤27 % and sequence similarity values based on groEL sequences were ≤88.7 %. On the basis of the characteristics presented, strain WCC 4585T is proposed to represent a novel species, Bacillus gottheilii sp. nov. The type strain is WCC 4585T( = DSM 23668T = CCUG 59876T = LMG 25856T).


Author(s):  
Auttaporn Booncharoen ◽  
Wonnop Visessanguan ◽  
Nattakorn Kuncharoen ◽  
Supalurk Yiamsombut ◽  
Pannita Santiyanont ◽  
...  

An aerobic, Gram-stain-positive, endospore-forming, rod-shaped and moderately halophilic strain SKP4-6T, was isolated from shrimp paste (Ka-pi) collected from Samut Sakhon Province, Thailand. Phylogenetic analysis revealed that strain SKP4-6T belonged to the genus Halobacillus and was most closely related to Halobacillus salinus JCM 11546T (98.6 %), Halobacillus locisalis KCTC 3788T (98.6 %) and Halobacillus yeomjeoni KCTC 3957T (98.6 %) based on 16S rRNA gene sequence similarity. The digital DNA–DNA hybridization (dDDH) and average nucleotide identity (ANI) values between strain SKP4-6T and its related species were 18.2–19.3 % and 69.84–84.51 %, respectively, which were lower than the threshold recommended for species delineation. The strain grew optimally at 30–40 °C, at pH 7.0 and with 10–15 % (w/v) NaCl. It contained l-Orn–d-Asp in the cell wall peptidoglycan. The DNA G+C content was 44.8 mol%. The major fatty acids were iso-C15 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The predominant isoprenoid quinone was MK-7. Phosphatidylglycerol and diphosphatidylglycerol were present as major polar lipids. Based on this polyphasic approach, digital DNA–DNA relatedness and ANI values, strain SKP4-6T represents a novel species of the genus Halobacillus , for which the name Halobacillus fulvus sp. nov. is proposed. The type strain is SKP4-6T (=JCM 32624T=TISTR 2595T).


Author(s):  
Yan Gao ◽  
Guangyu Li ◽  
Chen Fang ◽  
Zongze Shao ◽  
Yue-Hong Wu ◽  
...  

A Gram-stain-negative, rod-shaped and aerobic bacterial strain, named Ery12T, was isolated from the overlying water of the Lau Basin in the Southwest Pacific Ocean. Strain Ery12T showed high 16S rRNA gene sequences similarity to Tsuneonella flava MS1-4T (99.9 %), T. mangrovi MCCC 1K03311T (98.1 %), Altererythrobacter ishigakiensis NBRC 107699T (97.3 %) and exhibited ≤97.0 % sequence similarity with other type strains of species with validly published names. Growth was observed in media with 0–10.0 % NaCl (optimum 0–1.0 %, w/v), pH 5.0–9.5 (optimum 6.0–7.0) and 10–42 °C (optimum 30–37 °C). The predominant respiratory quinone was ubiquinone 10 (Q-10). The major cellular fatty acid was summed feature 8 (C18 : 1  ω7c and/or C18 : 1  ω6c). The major polar lipids were sphingoglycolipid, phosphatidyglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, three unidentified glycolipids, one unidentified aminoglycolipid and one unidentified lipid. The DNA G+C content was 60.8 %. The ANI and in silico DDH values between strain Ery12T and the type strains of its closely related species were 71.0- 91.8 % and 19.5- 44.6 %, respectively. According to the phenotypic, chemotaxonomic, phylogenetic and genomic data, strain Ery12T represents a novel species of the genus Tsuneonella , for which the name Tsuneonella suprasediminis is proposed. The type strain is Ery12T (=CGMCC 1.16500 T=MCCC 1A04421T=KCTC 62388T). We further propose to reclassify Altererythrobacter rhizovicinus and Altererythrobacter spongiae as Pelagerythrobacter rhizovicinus comb. nov. and Altericroceibacterium spongiae comb. nov., respectively.


Author(s):  
Hiroyuki Sawada ◽  
Takashi Fujikawa ◽  
Shigeru Osada ◽  
Mamoru Satou

Five phytopathogenic bacterial strains, MAFF 301449T, MAFF 301450, MAFF 301451, MAFF 301452, and MAFF 301453, which were isolated from bud blight lesions of cyclamen (Cyclamen persicum Mill.) in Miyagi, Japan, were subjected to polyphasic taxonomic characterisation. The cells were Gram-reaction-negative, aerobic, non-spore-forming, motile with one to five polar flagella, and rod-shaped. Analysis of 16S rRNA gene sequences showed that they belong to the genus Pseudomonas , with Pseudomonas extremaustralis 14-3T (99.79 % sequence similarity), Pseudomonas trivialis DSM 14937T (99.79 %), Pseudomonas poae DSM 14936T (99.72 %), and Pseudomonas antarctica CMS 35T (99.72 %) as their relatives. The genomic DNA G+C content was 60.3 mol% and the major fatty acids (>5 % of the total fatty acids) were C16 : 0, summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c), summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c), and C17 : 0 cyclo. Phylogenetic analysis using the rpoD gene sequences and phylogenomic analyses based on the whole genome sequences demonstrated that the strains are members of the Pseudomonas fluorescens subgroup, but form a monophyletic and robust clade separated from their relatives. Average nucleotide identity and digital DNA–DNA hybridisation analyses with the closely related Pseudomonas species corroborated their novel species status. The strains were differentiated from their relatives by phenotypic characteristics, pathogenicity towards cyclamen, cellular fatty acid composition, and whole-cell MALDI-TOF mass spectrometry profiles. Based on the phenotypic, chemotaxonomic, and genotypic data obtained, we conclude that the strains represent a novel Pseudomonas species, for which we propose the name Pseudomonas cyclaminis sp. nov.; the type strain is MAFF 301449T (=ICMP 23720T).


Sign in / Sign up

Export Citation Format

Share Document