Silanimonas mangrovi sp. nov., a member of the family Xanthomonadaceae isolated from mangrove sediment, and emended description of the genus Silanimonas

2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 274-279 ◽  
Author(s):  
T. N. R. Srinivas ◽  
T. B. Kailash ◽  
Pinnaka Anil Kumar

A novel Gram-negative, rod-shaped, motile bacterium, designated strain AK13T, was isolated from a sediment sample collected from mangrove of Namkhana, Sunderbans, West Bengal, India. Strain AK13T was positive for oxidase, DNase and lipase activities and negative for catalase, gelatinase, ornithine decarboxylase, lysine decarboxylase, nitrate reductase, aesculinase and urease activities. The fatty acids were dominated by iso-C11 : 0, iso-C11 : 0 3-OH, iso-C15 : 0, iso-C16 : 0, iso-C17 : 1ω9c and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH). Strain AK13T contained Q-8 as the major respiratory quinone and diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylserine, two unidentified aminolipids, one unidentified glycolipid and one unidentified lipid as the polar lipids. The DNA G+C content of strain AK13T was 55.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the type strain of Silanimonas lenta , of the family Xanthomonadaceae (phylum Proteobacteria ), was the closest neighbour of strain AK13T, with 95.2 % sequence similarity. Other members of the family showed sequence similarities <94.4 %. Based on the phenotypic characteristics and phylogenetic inference, strain AK13T is proposed as a member of a novel species of the genus Silanimonas , Silanimonas mangrovi sp. nov.; the type strain is AK13T ( = MTCC 11082T  = DSM 24914T). An emended description of the genus Silanimonas is also provided.

2014 ◽  
Vol 64 (Pt_3) ◽  
pp. 973-978 ◽  
Author(s):  
Hai Li ◽  
Xi-Ying Zhang ◽  
Chang Liu ◽  
Chao-Yi Lin ◽  
Zhong Xu ◽  
...  

A Gram-negative, orange-colony-forming, aerobic and non-flagellated bacterium, designated strain SM1202T, was isolated from marine sediment of Kongsfjorden, Svalbard. Analysis of 16S rRNA gene sequences revealed that strain SM1202T was phylogenetically closely related to the genus Polaribacter . It shared the highest 16S rRNA gene sequence similarity with the type strain of Polaribacter dokdonensis (94.2 %) and 92.7–93.9 % sequence similarity with type strains of other known species of the genus Polaribacter . The strain grew at 4–35 °C and with 1.0–5.0 % (w/v) NaCl. It contained iso-C15 : 0, iso-C15 : 0 3-OH, iso-C13 : 0, C15 : 0, iso-C15 : 1 G, iso-C17 : 0 3-OH and C15 : 1ω6c as predominant cellular fatty acids and menaquinone-6 (MK-6) as the major respiratory quinone. The polar lipids of strain SM1202T were phosphatidylethanolamine, one unidentified lipid, two unidentified aminophospholipids and one unidentified aminolipid. The genomic DNA G+C content of strain SM1202T was 36.4 mol%. On the basis of the data from this polyphasic taxonomic study, strain SM1202T represents a novel species in the genus Polaribacter of the family Flavobacteriaceae , for which the name Polaribacter huanghezhanensis sp. nov. is proposed. The type strain of Polaribacter huanghezhanensis is SM1202T ( = CCTCC AB 2013148T = KCTC 32516T). An emended description of the genus Polaribacter is also presented.


2013 ◽  
Vol 63 (Pt_10) ◽  
pp. 3597-3601 ◽  
Author(s):  
Guo-Wei Li ◽  
Xi-Ying Zhang ◽  
Chun-Sheng Wang ◽  
Yan-Jiao Zhang ◽  
Xue-Wei Xu ◽  
...  

A Gram-stain-negative, aerobic, catalase- and oxidase-positive, non-flagellated, rod-shaped bacterium, designated strain P-50-3T, was isolated from seawater of the Pacific. The strain grew at 10–40 °C (optimum at 30 °C) and with 0–12 % (w/v, optimum 2 %) NaCl. It reduced nitrate to nitrite but did not hydrolyse gelatin, starch or Tween 80. Analysis of 16S rRNA gene sequences showed that strain P-50-3T clustered tightly with the genus Albimonas and shared the highest 16S rRNA gene sequence similarity (94.3 %) with the type strain of Albimonas donghaensis . The major respiratory quinone was Q-10 and the major cellular fatty acids were C18 : 1ω7c, C18 : 0, 11-methyl C18 : 1ω7c and C16 : 0. Polar lipids included phosphatidylglycerol (PG), phosphatidylcholine (PC), two unidentified aminolipids and an unidentified lipid. The genomic DNA G+C content of strain P-50-3T was 69.0 mol%. On the basis of the data obtained in this polyphasic study, strain P-50-3T represents a novel species within the genus Albimonas , for which the name Albimonas pacifica sp. nov. is proposed. The type strain of Albimonas pacifica is P-50-3T ( = KACC 16527T = CGMCC 1.11030T). An emended description of the genus Albimonas Lim et al. 2008 is also proposed.


2015 ◽  
Vol 65 (Pt_1) ◽  
pp. 11-14 ◽  
Author(s):  
Gavin J. Humphreys ◽  
Angela Oates ◽  
Ruth G. Ledder ◽  
Andrew J. McBain

An aerobic, Gram-stain-negative, non-motile coccus, designated strain GVCNT2T, was isolated from the tonsils of a healthy adult female. Cells were oxidase- and catalase-positive, positive for the production of esterase (C4), esterase lipase (C8) and leucine arylamidase, and weakly positive for naphthol-AS-BI-phosphohydrolase and alkaline phosphatase. Cells were also capable of hydrolysing DNA. Growth was observed at 20–37 °C and in the presence of up to 1.5 % NaCl. Phylogenetic analysis of near full-length 16S rRNA gene sequences indicated that the strain exhibited closest sequence similarity to Moraxella boevrei ATCC 700022T (94.68 %) and an uncultured, unspeciated bacterial clone (strain S12-08; 99 %). The major fatty acids were C18 : 1ω9c, C18 : 0, C16 : 0 and C16 : 1ω6c/C16 : 1ω7c. The DNA G+C content of strain GVCNT2T was 40.7 mol%. The major respiratory quinone identified was Q-8. Strain GVCNT2T exhibited a comparable phenotypic profile to other members of the genus Moraxella but could be distinguished based on its ability to produce acid (weakly) from d-glucose, melibiose, l-arabinose and rhamnose and on its ability to hydrolyse DNA. On the basis of phenotypic and phylogenetic differences from other members of the family Moraxellaceae , strain GVCNT2T is considered to represent a novel species of a new genus, for which the name Faucicola mancuniensis gen. nov., sp. nov. is proposed. The type strain of Faucicola mancuniensis is GVCNT2T ( = DSM 28411T = NCIMB 14946T).


2012 ◽  
Vol 62 (Pt_7) ◽  
pp. 1698-1702 ◽  
Author(s):  
C. Ritika ◽  
K. Suresh ◽  
P. Anil Kumar

A novel Gram-negative, vibrio-shaped, motile bacterium, designated strain AK4T, was isolated from a sediment sample collected from a solar saltern at Kakinada, Andhra Pradesh, India. Strain AK4T was positive for oxidase, urease and DNase activities but negative for gelatinase, catalase, ornithine decarboxylase, lysine decarboxylase, nitrate reduction, aesculin, indole and lipase activities. The fatty acids were dominated by unsaturated components, with a high abundance of summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C17 : 1ω6c. Strain AK4T contained Q-10 as the major respiratory quinone and phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine as major polar lipids. The DNA G+C content of strain AK4T was 71.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain AK4T was most closely related to the type strain of Caenispirillum bisanense of the family Rhodospirillaceae (phylum ‘ Proteobacteria ’) (96.6 % sequence similarity). It shared <93.2 % 16S rRNA gene sequence similarity with other members of the family. Based on phenotypic characteristics and phylogenetic inference, strain AK4T is considered to represent a novel species of the genus Caenispirillum , for which the name Caenispirillum salinarum sp. nov. is proposed; the type strain is AK4T ( = MTCC 10963T = JCM 17360T).


2020 ◽  
Vol 70 (3) ◽  
pp. 1850-1860 ◽  
Author(s):  
Zahra Noviana ◽  
Selma Vieira ◽  
Javier Pascual ◽  
Serge Alain Tanemossu Fobofou ◽  
Manfred Rohde ◽  
...  

Two strains of the family Rhodospirillaceae were isolated from the rhizosphere of the medicinal plant Hypericum perforatum. Cells of both strains were Gram-stain-negative, motile by means of a single polar flagellum, non-spore-forming, non-capsulated, short rods that divided by binary fission. Colonies were small and white. Strains R5913T and R5959T were oxidase-positive, mesophilic, neutrophilic and grew optimally without NaCl. Both grew under aerobic and microaerophilic conditions and on a limited range of substrates with best results on yeast extract. Major fatty acids were C19 : 0 cyclo ω8c and C16 : 0; in addition, C18 : 1ω7c was also found as a predominant fatty acid in strain R5913T. The major respiratory quinone was ubiquinone 10 (Q-10). The DNA G+C contents of strains R5913T and R5959T were 66.0 and 67.4 mol%, respectively. 16S rRNA gene sequence comparison revealed that the closest relatives (<92 % similarity) of the strains are Oceanibaculum pacificum MCCC 1A02656T, Dongia mobilis CGMCC 1.7660T, Dongia soli D78T and Dongia rigui 04SU4-PT. The two novel strains shared 98.6 % sequence similarity and represent different species on the basis of low average nucleotide identity of their genomes (83.8 %). Based on the combined phenotypic, genomic and phylogenetic investigations, the two strains represent two novel species of a new genus in the family Rhodospirillaceae , for which the name Hypericibacter gen. nov. is proposed, comprising the type species Hypericibacter terrae sp. nov. (type strain R5913T=DSM 109816T=CECT 9472T) and Hypericibacter adhaerens sp. nov. (type strain R5959T=DSM 109817T=CECT 9620T).


2014 ◽  
Vol 64 (Pt_4) ◽  
pp. 1223-1228 ◽  
Author(s):  
Yunhui Zhang ◽  
Kaihao Tang ◽  
Xiaochong Shi ◽  
Xiao-Hua Zhang

A Gram-staining-negative, aerobic, rod-shaped bacterium, designated strain T202T, was isolated from the gill of a cultured flounder (Paralichthys olivaceus). Based on 16S rRNA gene sequence similarity, strain T202T was a member of the family Colwelliaceae and shared 93.32–96.58 % similarity with type strains of all members of the most closely related genus Thalassomonas . Phylogenetically, the isolate shared a root with the type strains of four marine species, Thalassomonas agariperforans M-M1T, Thalassomonas agarivorans TMA1T, Thalassomonas loyana CBMAI 722T and Thalassomonas ganghwensis JC2041T. Optimal growth occurred in the presence of 2–4 % (w/v) NaCl, at pH 7.0–8.0 and at 28 °C. Ubiquinone 8 (Q-8) was the predominant respiratory quinone. The major fatty acids were C16 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 1ω9c and C17 : 1ω8c. The major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The DNA G+C content of strain T202T was 37 mol%. On the basis of polyphasic analysis, especially the phylogenetic relationships and the lower DNA G+C content, strain T202T is considered to represent a novel species in a new genus, for which the name Thalassotalea piscium gen. nov., sp. nov. is proposed. The type strain of Thalassotalea piscium is T202T ( = JCM 18590T = DSM 26287T = KCTC 32144T). Because Thalassomonas agariperforans M-M1T, Thalassomonas agarivorans TMA1T, Thalassomonas loyana CBMAI 722T and Thalassomonas ganghwensis JC2041T formed a phylogenetic group together with strain T202T that was clearly separated from other known strains of Thalassomonas , these four species are reclassified as members of the genus Thalassotalea as Thalassotalea agariperforans comb. nov. (type strain M-M1T = KCTC 23343T = CCUG 60020T), Thalassotalea agarivorans comb. nov. (type strain TMA1T = BCRC 17492T = JCM 13379T = DSM 19706T), Thalassotalea loyana comb. nov. (type strain CBMAI 722T = LMG 22536T) and Thalassotalea ganghwensis comb. nov. (type strain JC2041T = IMSNU 14005T = KCTC 12041T = DSM 15355T). The type species of the genus Thalassotalea is Thalassotalea ganghwensis gen. nov., comb. nov. An emended description of the genus Thalassomonas is also proposed.


2014 ◽  
Vol 64 (Pt_4) ◽  
pp. 1116-1122 ◽  
Author(s):  
Fehmida Bibi ◽  
Jae Heon Jeong ◽  
Eu Jin Chung ◽  
Che Ok Jeon ◽  
Young Ryun Chung

An endophytic, Gram-staining-negative bacterium was isolated from sterilized roots of a plant, Suaeda maritima, growing on tidal flats. Cells of the strain were motile by means of a single polar flagellum and colonies were pigmented light brown. Strain YC6927T was able to grow at 15–37 °C (optimum at 28–30 °C) and at pH 5.0–10.0 (optimum at pH 7.0–8.0). The strain was able to grow at NaCl concentrations of 0–9.0 % (w/v), with optimum growth at 0–5.0 % NaCl. Comparison of 16S rRNA gene sequences showed that the strain was a member of the genus Labrenzia , exhibiting the highest similarity to Labrenzia marina mano18T (97.6 % sequence similarity). Strain YC6927T produced light-brown carotenoid pigments. The major respiratory quinone was Q-10 and the DNA G+C content was 58.5 mol%. The DNA–DNA relatedness between strain YC6927T and closely related strains was between 8.2±1.8 and 20.3±1.5 %. Strain YC6927T contained summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C14 : 0 3-OH as major fatty acids, confirming the affiliation of the strain with the genus Labrenzia . The polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylmonomethylethanolamine, an unknown aminolipid, an unknown phospholipid and five unknown lipids. On the basis of phylogenetic analysis, physiological and biochemical characterization and DNA–DNA hybridization data, strain YC6927T should be assigned to a novel species of the genus Labrenzia , for which the name Labrenzia suaedae sp. nov. is proposed. The type strain is YC6927T ( = KACC 13772T = DSM 22153T). An emended description of the genus Labrenzia is also proposed.


2020 ◽  
Vol 70 (9) ◽  
pp. 4966-4977 ◽  
Author(s):  
Selma Vieira ◽  
Javier Pascual ◽  
Christian Boedeker ◽  
Alicia Geppert ◽  
Thomas Riedel ◽  
...  

The family Caulobacteraceae comprises prosthecate bacteria with a dimorphic cell cycle and also non-prosthecate bacteria. Cells of all described species divide by binary fission. Strain 0127_4T was isolated from forest soil in Baden Württemberg (Germany) and determined to be the first representative of the family Caulobacteraceae which divided by budding. Cells of strain 0127_4T were Gram-negative, rod-shaped, prosthecate, motile by means of a polar flagellum, non-spore-forming and non-capsulated. The strain formed small white colonies and grew aerobically and chemo-organotrophically utilizing organic acids, amino acids and proteinaceous substrates. 16S rRNA gene sequence analysis indicated that this bacterium was related to Aquidulcibacter paucihalophilus TH1-2T and Asprobacter aquaticus DRW22-8T with 91.3 and 89.7% sequence similarity, respectively. Four unidentified glycolipids were detected as the major polar lipids and, unlike all described members of the family Caulobacteraceae , phosphatidylglycerol was absent. The major fatty acids were summed feature 8 (C18 : 1ω7c/C18 : 1ω6c), summed feature 9 (iso-C17 : 1ω9c/C16 : 0 10-methyl), C16 : 0 and summed feature 3 (C16 : 1 ω6c/C16 : 1 ω7c). The major respiratory quinone was Q-10. The G+C content of the genomic DNA was 63.5 %. Based on the present taxonomic characterization, strain 0127_4T represents a novel species of a new genus, Terricaulis silvestris gen. nov., sp. nov. The type strain of Terricaulis silvestris is 0127_4T (=DSM 104635T=CECT 9243T).


2020 ◽  
Vol 70 (11) ◽  
pp. 5812-5817 ◽  
Author(s):  
Xi Gui ◽  
Shufei Wu ◽  
Fanghang Huang ◽  
Yiran Wang ◽  
Ruyue He ◽  
...  

A novel bacterial strain of the family ‘Vicingaceae’ was isolated from mangrove of Tielu Harbour, Hainan, PR China. Strain S-15T was a Gram-stain-negative, short-rod-shaped, yellow-pigmented that could grow at 10–42 °C (optimum, 26–35 °C), at pH 5.0–9.0 (optimum, pH 5.5) and in 0.5–10.0 % w/v sea salt (optimum, 3.5–4.0 %). Cells of strain S-15T were 0.9–1.4 µm long, 0.8–0.9 µm wide, catalase-positive and oxidase-positive. Colonies on modified marine agar 2216 were 0.5–2.0 mm in diameter after incubation for 72 h at 28 °C. Analysis of 16S rRNA gene sequences revealed that strain S-15T was most closely related to Vicingus serpentipes ANORD5T (89.8 %). The major respiratory quinone of strain S-15T was menaquinone MK-7, and the dominant fatty acids were C15:0 iso, C15:1 iso G and C17:0 iso 3-OH. The major polar lipids were two unidentified aminolipids, phosphatidylethanolamine and six unidentified lipids. Analyses showed that the genome size was 3.52 Mb and the DNA G+C content was 35.6 mol%, which were higher than V. serpentipes ANORD5T with 2.92 Mb genome size and 31.0 mol% G+C content, respectively. Based on morphological, physiological and phylogenetic data, strain S-15T is considered a type strain of a new species and a new genus of the family ‘Vicingaceae’ for which the name Acidiluteibacter ferrifornacis gen. nov., sp. nov. is proposed. The type strain of Acidiluteibacter ferrifornacis is S-15T (=MCCC 1K03817T=JCM 33804T).


2020 ◽  
Vol 70 (6) ◽  
pp. 3740-3748 ◽  
Author(s):  
Xi Feng ◽  
Yi-Ran Wang ◽  
Qi-Hang Zou ◽  
Jin-Yu Zhang ◽  
Zong-Jun Du

A Gram-stain-negative, aerobic, gliding, rod-shaped (0.2–0.5×1.0-13.0 µm) and yellow-pigmented bacterium, designated PLHSN227T, was isolated from seawater collected near the coast of Yantai, PR China. PLHSN227T was found to grow at 15–37 °C (optimum, 28–30 °C) and pH 6.0–8.5 (optimum, 6.5–7.5) in the presence of 2–14 % (w/v) NaCl (optimum, 5.0 %). Phylogenetic analysis of the 16S rRNA gene sequences revealed that PLHSN227T represented a member of the family Flavobacteriaceae and exhibited the highest sequence similarity (94.6 %) to the type strain Salegentibacter holothuriorum NBRC 100249T. The chemotaxonomic analysis revealed that the sole respiratory quinone was menaquinone 6 (MK-6) and the major fatty acids included C19 : 0ω8c cyclo, iso-C15 : 0, anteiso-C15 : 0, C18 : 0 and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). The major polar lipids included phosphatidylethanolamine, one unidentified aminolipid and two unidentified lipids. The DNA G+C content of PLHSN227T was 35.6 mol%. PLHSN227T showed the highest average amino acid identity value of 67.2 %, the average nucleotide identity value of 75.6 and 14.5 % digital DNA–DNA hybridization identity with Mesonia algae DSM 15361T. According to the phylogenetic data, PLHSN227T formed a distinct clade in the phylogenetic tree. On the basis of phenotypic, chemotaxonomic and phylogenetic data, it is considered that PLHSN227T represents a novel genus within the family Flavobacteriaceae , for which the name Haloflavibacter putidus gen. nov., sp. nov. is proposed. The type strain is PLHSN227T (=KCTC 72159T=MCCC 1H00371T).


Sign in / Sign up

Export Citation Format

Share Document