prosthecate bacteria
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 1)

H-INDEX

13
(FIVE YEARS 1)

2020 ◽  
Vol 70 (9) ◽  
pp. 4966-4977 ◽  
Author(s):  
Selma Vieira ◽  
Javier Pascual ◽  
Christian Boedeker ◽  
Alicia Geppert ◽  
Thomas Riedel ◽  
...  

The family Caulobacteraceae comprises prosthecate bacteria with a dimorphic cell cycle and also non-prosthecate bacteria. Cells of all described species divide by binary fission. Strain 0127_4T was isolated from forest soil in Baden Württemberg (Germany) and determined to be the first representative of the family Caulobacteraceae which divided by budding. Cells of strain 0127_4T were Gram-negative, rod-shaped, prosthecate, motile by means of a polar flagellum, non-spore-forming and non-capsulated. The strain formed small white colonies and grew aerobically and chemo-organotrophically utilizing organic acids, amino acids and proteinaceous substrates. 16S rRNA gene sequence analysis indicated that this bacterium was related to Aquidulcibacter paucihalophilus TH1-2T and Asprobacter aquaticus DRW22-8T with 91.3 and 89.7% sequence similarity, respectively. Four unidentified glycolipids were detected as the major polar lipids and, unlike all described members of the family Caulobacteraceae , phosphatidylglycerol was absent. The major fatty acids were summed feature 8 (C18 : 1ω7c/C18 : 1ω6c), summed feature 9 (iso-C17 : 1ω9c/C16 : 0 10-methyl), C16 : 0 and summed feature 3 (C16 : 1 ω6c/C16 : 1 ω7c). The major respiratory quinone was Q-10. The G+C content of the genomic DNA was 63.5 %. Based on the present taxonomic characterization, strain 0127_4T represents a novel species of a new genus, Terricaulis silvestris gen. nov., sp. nov. The type strain of Terricaulis silvestris is 0127_4T (=DSM 104635T=CECT 9243T).


2018 ◽  
Vol 12 (9) ◽  
pp. 2225-2237 ◽  
Author(s):  
Liping Hao ◽  
Simon Jon McIlroy ◽  
Rasmus Hansen Kirkegaard ◽  
Søren Michael Karst ◽  
Warnakulasuriya Eustace Yrosh Fernando ◽  
...  
Keyword(s):  

2010 ◽  
Vol 60 (8) ◽  
pp. 1837-1843 ◽  
Author(s):  
Wolf-Rainer Abraham ◽  
Andréia B. Estrela ◽  
Dennis I. Nikitin ◽  
John Smit ◽  
Marc Vancanneyt

Eight strains of Gram-negative, bacteroid-shaped, prosthecate bacteria, isolated from brackish water (MCS24T, MCS17 and MCS35), the marine environment (CM260, CM272 and CM282) and activated sludge (FWC40T and FWC43T), were characterized using a polyphasic approach. Analysis of 16S rRNA gene sequences determined that all strains were affiliated to the alphaproteobacterial genus Brevundimonas, forming three distinct phyletic lineages within the genus. The strains grew best with 5–30 g NaCl l−1 at 20–30 °C. DNA G+C contents for strains MCS24T, FWC40T and FWC43T were between 65 and 67 mol%, in accordance with values reported previously for other species of the genus. Moreover, chemotaxonomic data and physiological and biochemical tests allowed the phenotypic differentiation of three novel species within the genus Brevundimonas, for which the names Brevundimonas halotolerans sp. nov. (type strain MCS24T =LMG 25346T =CCUG 58273T), Brevundimonas poindexterae sp. nov. (type strain FWC40T =LMG 25261T =CCUG 57883T) and Brevundimonas staleyi sp. nov. (type strain FWC43T =LMG 25262T =CCUG 57884T) are proposed.


Microbiology ◽  
2007 ◽  
Vol 76 (4) ◽  
pp. 480-486 ◽  
Author(s):  
N. A. Lapteva ◽  
N. L. Bel’kova ◽  
V. V. Parfenova

2006 ◽  
Vol 188 (19) ◽  
pp. 6841-6850 ◽  
Author(s):  
Jonathan H. Badger ◽  
Timothy R. Hoover ◽  
Yves V. Brun ◽  
Ronald M. Weiner ◽  
Michael T. Laub ◽  
...  

ABSTRACT The dimorphic prosthecate bacteria (DPB) are α-proteobacteria that reproduce in an asymmetric manner rather than by binary fission and are of interest as simple models of development. Prior to this work, the only member of this group for which genome sequence was available was the model freshwater organism Caulobacter crescentus. Here we describe the genome sequence of Hyphomonas neptunium, a marine member of the DPB that differs from C. crescentus in that H. neptunium uses its stalk as a reproductive structure. Genome analysis indicates that this organism shares more genes with C. crescentus than it does with Silicibacter pomeroyi (a closer relative according to 16S rRNA phylogeny), that it relies upon a heterotrophic strategy utilizing a wide range of substrates, that its cell cycle is likely to be regulated in a similar manner to that of C. crescentus, and that the outer membrane complements of H. neptunium and C. crescentus are remarkably similar. H. neptunium swarmer cells are highly motile via a single polar flagellum. With the exception of cheY and cheR, genes required for chemotaxis were absent in the H. neptunium genome. Consistent with this observation, H. neptunium swarmer cells did not respond to any chemotactic stimuli that were tested, which suggests that H. neptunium motility is a random dispersal mechanism for swarmer cells rather than a stimulus-controlled navigation system for locating specific environments. In addition to providing insights into bacterial development, the H. neptunium genome will provide an important resource for the study of other interesting biological processes including chromosome segregation, polar growth, and cell aging.


2003 ◽  
Vol 5 (10) ◽  
pp. 925-932 ◽  
Author(s):  
Paul W. Baker ◽  
Kimio Ito ◽  
Kazuya Watanabe

Sign in / Sign up

Export Citation Format

Share Document