scholarly journals Description of Thalassotalea piscium gen. nov., sp. nov., isolated from flounder (Paralichthys olivaceus), reclassification of four species of the genus Thalassomonas as members of the genus Thalassotalea gen. nov. and emended description of the genus Thalassomonas

2014 ◽  
Vol 64 (Pt_4) ◽  
pp. 1223-1228 ◽  
Author(s):  
Yunhui Zhang ◽  
Kaihao Tang ◽  
Xiaochong Shi ◽  
Xiao-Hua Zhang

A Gram-staining-negative, aerobic, rod-shaped bacterium, designated strain T202T, was isolated from the gill of a cultured flounder (Paralichthys olivaceus). Based on 16S rRNA gene sequence similarity, strain T202T was a member of the family Colwelliaceae and shared 93.32–96.58 % similarity with type strains of all members of the most closely related genus Thalassomonas . Phylogenetically, the isolate shared a root with the type strains of four marine species, Thalassomonas agariperforans M-M1T, Thalassomonas agarivorans TMA1T, Thalassomonas loyana CBMAI 722T and Thalassomonas ganghwensis JC2041T. Optimal growth occurred in the presence of 2–4 % (w/v) NaCl, at pH 7.0–8.0 and at 28 °C. Ubiquinone 8 (Q-8) was the predominant respiratory quinone. The major fatty acids were C16 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 1ω9c and C17 : 1ω8c. The major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The DNA G+C content of strain T202T was 37 mol%. On the basis of polyphasic analysis, especially the phylogenetic relationships and the lower DNA G+C content, strain T202T is considered to represent a novel species in a new genus, for which the name Thalassotalea piscium gen. nov., sp. nov. is proposed. The type strain of Thalassotalea piscium is T202T ( = JCM 18590T = DSM 26287T = KCTC 32144T). Because Thalassomonas agariperforans M-M1T, Thalassomonas agarivorans TMA1T, Thalassomonas loyana CBMAI 722T and Thalassomonas ganghwensis JC2041T formed a phylogenetic group together with strain T202T that was clearly separated from other known strains of Thalassomonas , these four species are reclassified as members of the genus Thalassotalea as Thalassotalea agariperforans comb. nov. (type strain M-M1T = KCTC 23343T = CCUG 60020T), Thalassotalea agarivorans comb. nov. (type strain TMA1T = BCRC 17492T = JCM 13379T = DSM 19706T), Thalassotalea loyana comb. nov. (type strain CBMAI 722T = LMG 22536T) and Thalassotalea ganghwensis comb. nov. (type strain JC2041T = IMSNU 14005T = KCTC 12041T = DSM 15355T). The type species of the genus Thalassotalea is Thalassotalea ganghwensis gen. nov., comb. nov. An emended description of the genus Thalassomonas is also proposed.

2012 ◽  
Vol 62 (Pt_4) ◽  
pp. 839-843 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Soo-Young Lee ◽  
Yong-Taek Jung ◽  
Jung-Sook Lee ◽  
...  

A Gram-stain-negative, non-motile, non-spore-forming, aerobic, rod-shaped bacterial strain, designated DPG-28T, was isolated from seawater on the southern coast of Korea. Strain DPG-28T grew optimally at 30 °C and in the presence of 2 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain DPG-28T formed a coherent cluster with members of the genera Marivita and Gaetbulicola , with which it exhibited sequence similarity values of 97.8–98.5 %. The DNA G+C content of strain DPG-28T was 65.1 mol%. The predominant ubiquinone of strain DPG-28T was ubiquinone-10 (Q-10), consistent with data for the genera Marivita and Gaetbulicola . The cellular fatty acid profiles of strain DPG-28T and the type strains of Marivita cryptomonadis , Marivita litorea and Gaetbulicola byunsanensis were essentially similar in that the common predominant fatty acid was C18 : 1ω7c. Major polar lipids found in strain DPG-28T and the type strains of M. cryptomonadis , M. litorea and G. byunsanensis were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine and an unidentified aminolipid. From these data, it is proposed that Gaetbulicola byunsanensis be reclassified as a member of the genus Marivita , for which the name Marivita byunsanensis comb. nov. is proposed, with the type strain SMK-114T ( = CCUG 57612T  = KCTC 22632T), and that strain DPG-28T be classified in the genus Marivita . Differential phenotypic properties and genetic distinctiveness of strain DPG-28T demonstrated that this strain is distinguishable from M. cryptomonadis , M. litorea and G. byunsanensis . On the basis of the data presented, strain DPG-28T is considered to represent a novel species of the genus Marivita , for which the name Marivita hallyeonensis sp. nov. is proposed. The type strain is DPG-28T ( = KCTC 23421T  = CCUG 60522T). An emended description of the genus Marivita is also provided.


2014 ◽  
Vol 64 (Pt_4) ◽  
pp. 1252-1256 ◽  
Author(s):  
Zhong Xu ◽  
Xi-Ying Zhang ◽  
Hai-Nan Su ◽  
Zi-Chao Yu ◽  
Chang Liu ◽  
...  

A Gram-stain-negative, aerobic, oxidase- and catalase-positive, flagellated, rod-shaped bacterial strain, designated SM1222T, was isolated from the deep-sea sediment of the South China Sea. The strain grew at 4–35 °C and with 0.5–8 % NaCl (w/v). Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain SM1222T was affiliated with the genus Oceanisphaera in the class Gammaproteobacteria . It shared the highest sequence similarity with the type strain of Oceanisphaera ostreae (96.8 %) and 95.4–96.6 % sequence similarities with type strains of other species of the genus Oceanisphaera with validly published names. Strain SM1222T contained summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH), C18 : 1ω7c, C16 : 0, C12 : 0 and summed feature 2 (C14 : 0 3-OH and/or iso-C16 : 1 I) as the major fatty acids and ubiquinone Q-8 as the predominant respiratory quinone. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The genomic DNA G+C content of strain SM1222T was 51.5 mol%. On the basis of the evidence presented in this study, strain SM1222T represents a novel species of the genus Oceanisphaera , for which the name Oceanisphaera profunda sp. nov. is proposed. The type strain of Oceanisphaera profunda is SM1222T ( = CCTCC AB 2013241T = KCTC 32510T). An emended description of the genus Oceanisphaera Romanenko et al. 2003 emend. Choi et al. 2011 is also proposed.


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 849-854 ◽  
Author(s):  
Chun-Xiao Chen ◽  
Xi-Ying Zhang ◽  
Chang Liu ◽  
Yong Yu ◽  
Ang Liu ◽  
...  

A Gram-negative, aerobic, non-motile, pink-pigmented and rod-shaped strain, designated ZS3-33T, was isolated from Antarctic intertidal sandy sediment. The strain grew optimally at 15 °C and with 1.0 % (w/v) NaCl. It reduced nitrate to nitrite and hydrolysed Tween 20. It could not produce bacteriochlorophyll a. The predominant cellular fatty acid was C18 : 1ω7c and the predominant respiratory quinone was Q-10. The major polar lipids were phosphatidylglycerol, phosphatidylcholine, two unidentified aminophospholipids and an unidentified aminolipid. Analyses of 16S rRNA gene sequences revealed that strain ZS3-33T belonged to the genus Pseudorhodobacter , showing 97.4 % similarity to the type strain of Pseudorhodobacter ferrugineus and 95.3 % similarity to the type strain of Pseudorhodobacter aquimaris . Levels of gyrB gene sequence similarity between strain ZS3-33T and the type strains of P. ferrugineus and P. aquimaris were 87.6 and 81.7 %, respectively. DNA–DNA relatedness between strain ZS3-33T and P. ferrugineus DSM 5888T was 56.6 %. The genomic DNA G+C content of strain ZS3-33T was 57.1 mol%. Based on data from this polyphasic study, strain ZS3-33T represents a novel species of the genus Pseudorhodobacter , for which the name Pseudorhodobacter antarcticus sp. nov. is proposed. The type strain is ZS3-33T ( = CGMCC 1.10836T = KCTC 23700T). An emended description of the genus Pseudorhodobacter Uchino et al. 2002 emend. Jung et al. 2012 is also proposed.


Author(s):  
Yan Gao ◽  
Guangyu Li ◽  
Chen Fang ◽  
Zongze Shao ◽  
Yue-Hong Wu ◽  
...  

A Gram-stain-negative, rod-shaped and aerobic bacterial strain, named Ery12T, was isolated from the overlying water of the Lau Basin in the Southwest Pacific Ocean. Strain Ery12T showed high 16S rRNA gene sequences similarity to Tsuneonella flava MS1-4T (99.9 %), T. mangrovi MCCC 1K03311T (98.1 %), Altererythrobacter ishigakiensis NBRC 107699T (97.3 %) and exhibited ≤97.0 % sequence similarity with other type strains of species with validly published names. Growth was observed in media with 0–10.0 % NaCl (optimum 0–1.0 %, w/v), pH 5.0–9.5 (optimum 6.0–7.0) and 10–42 °C (optimum 30–37 °C). The predominant respiratory quinone was ubiquinone 10 (Q-10). The major cellular fatty acid was summed feature 8 (C18 : 1  ω7c and/or C18 : 1  ω6c). The major polar lipids were sphingoglycolipid, phosphatidyglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, three unidentified glycolipids, one unidentified aminoglycolipid and one unidentified lipid. The DNA G+C content was 60.8 %. The ANI and in silico DDH values between strain Ery12T and the type strains of its closely related species were 71.0- 91.8 % and 19.5- 44.6 %, respectively. According to the phenotypic, chemotaxonomic, phylogenetic and genomic data, strain Ery12T represents a novel species of the genus Tsuneonella , for which the name Tsuneonella suprasediminis is proposed. The type strain is Ery12T (=CGMCC 1.16500 T=MCCC 1A04421T=KCTC 62388T). We further propose to reclassify Altererythrobacter rhizovicinus and Altererythrobacter spongiae as Pelagerythrobacter rhizovicinus comb. nov. and Altericroceibacterium spongiae comb. nov., respectively.


2020 ◽  
Vol 70 (5) ◽  
pp. 3323-3327 ◽  
Author(s):  
Qian Wang ◽  
Sheng-Dong Cai ◽  
Jie Liu ◽  
De-Chao Zhang

The Gram-strain-negative, rod-shaped, facultatively anaerobic, non-motile bacterial strain, designated S1-10T, was isolated from marine sediment. Strain S1-10T grew at 4–42 °C (optimally at 30–35 °C), at pH 7.0–10 (optimally at pH 9) and in the presence of 0.5–8 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain S1-10T was related to the genus Aequorivita and had highest 16S rRNA gene sequence similarity to Aequorivita viscosa 8-1bT (97.7%). The predominant cellular fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The main respiratory quinone was menaquinone 6 (MK-6). The genomic DNA G+C content of strain S1-10T was 34.6 mol%. The polar lipid profile of strain S1-10T contained phosphatidylethanolamine, two aminolipids, two glycolipids, one phosphoglycolipid and three unidentified polar lipids. In addition, the maximum values of in silico DNA–DNA hybridization (isDDH) and average nucleotide identity (ANI) between strain S1-10T and A. viscosa CGMCC 1.11023T were 15.4 and 75.7 %, respectively. Combined data from phenotypic, phylogenetic, isDDH and ANI analyses demonstrated that strain S1-10T is the representative of a novel species of the genus Aequorivita , for which we propose the name Aequorivita sinensis sp. nov. (type strain S1-10T=CGMCC 1.12579T=JCM 19789T). We also propose that Vitellibacter todarodis and Vitellibacter aquimaris should be transferred into genus Aequorivita and be named Aequorivita todarodis comb. nov. and Aequorivita aquimaris comb. nov., respectively. The type strain of Aequorivita todarodis comb. nov. is MYP2-2T (= KCTC 62141T= NBRC 113025T) and the type strain of Aequorivita aquimaris comb. nov. is D-24T (=KCTC 42708T=DSM 101732T).


2020 ◽  
Vol 70 (11) ◽  
pp. 5627-5633 ◽  
Author(s):  
Yong Li ◽  
Shengkun Wang ◽  
Ju-pu Chang ◽  
Dan-ran Bian ◽  
Li-min Guo ◽  
...  

Two Gram-stain-negative, aerobic, non-motile bacterial strains, 36D10-4-7T and 30C10-4-7T, were isolated from bark canker tissue of Populus × euramericana, respectively. 16S rRNA gene sequence analysis revealed that strain 36D10-4-7T shows 98.0 % sequence similarity to Sphingomonas adhaesiva DSM 7418T, and strain 30C10-4-7T shows highest sequence similarity to Sphingobacterium arenae H-12T (95.6 %). Average nucleotide identity analysis indicates that strain 36D10-4-7T is a novel member different from recognized species in the genus Sphingomonas . The main fatty acids and respiratory quinone detected in strain 36D10-4-7T are C18 : 1  ω7c and/or C18 : 1  ω6c and Q-10, respectively. The polar lipids are diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, aminolipid, phosphatidylethanolamine, sphingoglycolipid, two uncharacterized phospholipids and two uncharacterized lipids. For strain 30C10-4-7T, the major fatty acids and menaquinone are iso-C15 : 0, C16 : 1  ω7c and/or C16 : 1  ω6c and iso-C17 : 0 3-OH and MK-7, respectively. The polar lipid profile includes phosphatidylethanolamine, phospholipids, two aminophospholipids and six unidentified lipids. Based on phenotypic and genotypic characteristics, these two strains represent two novel species within the genera Sphingomonas and Sphingobacterium . The name Sphingomonas corticis sp. nov. (type strain 36D10-4-7T=CFCC 13112T=KCTC 52799T) and Sphingobacterium corticibacterium sp. nov. (type strain 30C10-4-7T=CFCC 13069T=KCTC 52797T) are proposed.


Author(s):  
Masataka Kanamuro ◽  
Yuki Sato-Takabe ◽  
So Muramatsu ◽  
Setsuko Hirose ◽  
Yuki Muramatsu ◽  
...  

A strictly aerobic, bacteriochlorophyll (BChl) a-containing alphaproteobacterium, designated strain K6T, was isolated from seawater around an aquaculture site in the Uwa Sea in Japan. The novel strain grew optimally at 30 °C at pH 7.0–7.5 and in the presence of 2.0 % (w/v) NaCl. The nonmotile and coccoid or rod-shaped cells formed pink-pigmented colonies on agar plates containing organic compounds. Cells showed an in vivo absorption maximum at 870 nm in the near-infrared region, indicating the presence of BChl a in the light-harvesting 1 complex. The new bacterial strain was Gram-stain-negative and oxidase- and catalase-positive. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain K6T was closely related to species in the genus Litoreibacter . The closest phylogenetic relatives of strain K6T were Litoreibacter ponti GJSW-31T (98.56 % sequence similarity), Litoreibacter janthinus KMM 3842T (97.63 %) and Litoreibacter albidus KMM 3851T (96.88 %). The G+C content of the genomic DNA was 58.26 mol%. The average nucleotide identity value of strain K6T with the type strain of L. ponti was 77.16 % (SD 4.79 %). The digital DNA−DNA hybridization value of strain K6T with the type strain of L. ponti was 19.40 %. The respiratory quinone was ubiquinone-10. The major cellular fatty acids were C18 : 1 ω7c, C16 : 0 and 11-methyl C18 : 1 ω7c. The dominant polar lipids were phosphatidylcholine and phosphatidylglycerol. On the basis of the genetic and phenotypic data obtained in the present study, we propose a new species in the genus Litoreibacter : Litoreibacter roseus sp. nov., whose type strain is K6T (=DSM 110109T=NBRC 114114T). Strain K6T represents the first confirmed species that produces BChl a within the genus Litoreibacter .


2013 ◽  
Vol 63 (Pt_10) ◽  
pp. 3597-3601 ◽  
Author(s):  
Guo-Wei Li ◽  
Xi-Ying Zhang ◽  
Chun-Sheng Wang ◽  
Yan-Jiao Zhang ◽  
Xue-Wei Xu ◽  
...  

A Gram-stain-negative, aerobic, catalase- and oxidase-positive, non-flagellated, rod-shaped bacterium, designated strain P-50-3T, was isolated from seawater of the Pacific. The strain grew at 10–40 °C (optimum at 30 °C) and with 0–12 % (w/v, optimum 2 %) NaCl. It reduced nitrate to nitrite but did not hydrolyse gelatin, starch or Tween 80. Analysis of 16S rRNA gene sequences showed that strain P-50-3T clustered tightly with the genus Albimonas and shared the highest 16S rRNA gene sequence similarity (94.3 %) with the type strain of Albimonas donghaensis . The major respiratory quinone was Q-10 and the major cellular fatty acids were C18 : 1ω7c, C18 : 0, 11-methyl C18 : 1ω7c and C16 : 0. Polar lipids included phosphatidylglycerol (PG), phosphatidylcholine (PC), two unidentified aminolipids and an unidentified lipid. The genomic DNA G+C content of strain P-50-3T was 69.0 mol%. On the basis of the data obtained in this polyphasic study, strain P-50-3T represents a novel species within the genus Albimonas , for which the name Albimonas pacifica sp. nov. is proposed. The type strain of Albimonas pacifica is P-50-3T ( = KACC 16527T = CGMCC 1.11030T). An emended description of the genus Albimonas Lim et al. 2008 is also proposed.


2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 274-279 ◽  
Author(s):  
T. N. R. Srinivas ◽  
T. B. Kailash ◽  
Pinnaka Anil Kumar

A novel Gram-negative, rod-shaped, motile bacterium, designated strain AK13T, was isolated from a sediment sample collected from mangrove of Namkhana, Sunderbans, West Bengal, India. Strain AK13T was positive for oxidase, DNase and lipase activities and negative for catalase, gelatinase, ornithine decarboxylase, lysine decarboxylase, nitrate reductase, aesculinase and urease activities. The fatty acids were dominated by iso-C11 : 0, iso-C11 : 0 3-OH, iso-C15 : 0, iso-C16 : 0, iso-C17 : 1ω9c and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH). Strain AK13T contained Q-8 as the major respiratory quinone and diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylserine, two unidentified aminolipids, one unidentified glycolipid and one unidentified lipid as the polar lipids. The DNA G+C content of strain AK13T was 55.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the type strain of Silanimonas lenta , of the family Xanthomonadaceae (phylum Proteobacteria ), was the closest neighbour of strain AK13T, with 95.2 % sequence similarity. Other members of the family showed sequence similarities <94.4 %. Based on the phenotypic characteristics and phylogenetic inference, strain AK13T is proposed as a member of a novel species of the genus Silanimonas , Silanimonas mangrovi sp. nov.; the type strain is AK13T ( = MTCC 11082T  = DSM 24914T). An emended description of the genus Silanimonas is also provided.


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1684-1689 ◽  
Author(s):  
Sooyeon Park ◽  
Jung-Hoon Yoon

A Gram-negative, non-spore-forming, non-flagellated, coccoid-, oval- or rod-shaped strain, designated M-M23T, was isolated from seashore sediment at Geoje island, South Korea. Strain M-M23T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 2 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain M-M23T clustered with the type strains of the two species of the genus Hirschia , with which it exhibited 97.6–98.1 % 16S rRNA gene sequence similarity. Sequence similarity with the type strains of other recognized species was <90.8 %. Strain M-M23T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c and C16 : 0 as the major fatty acids. The major polar lipids of strain M-M23T were phosphatidylglycerol and two unidentified lipids. The DNA G+C content of strain M-M23T was 45.4 mol%. DNA–DNA relatedness between the isolate and Hirschia baltica DSM 5838T and Hirschia maritima JCM 14974T was 22±7.2 and 14±5.6 %, respectively. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain M-M23T is separate from the other described members of the genus Hirschia . On the basis of the data presented, strain M-M23T is considered to represent a novel species of the genus Hirschia , for which the name Hirschia litorea sp. nov. is proposed. The type strain is M-M23T ( = KCTC 32081T  = CCUG 62793T). An emended description of the genus Hirschia is also provided.


Sign in / Sign up

Export Citation Format

Share Document