Reyranella soli sp. nov., isolated from forest soil, and emended description of the genus Reyranella Pagnier et al. 2011

2013 ◽  
Vol 63 (Pt_9) ◽  
pp. 3164-3167 ◽  
Author(s):  
Soo-Jin Kim ◽  
Jae-Hyung Ahn ◽  
Tae-Hyung Lee ◽  
Hang-Yeon Weon ◽  
Seung-Beom Hong ◽  
...  

A Gram-stain-negative, non-motile, rod-shaped bacterial strain, designated KIS14-15T, was isolated from forest soil of Baengnyeong Island in the Yellow Sea in Korea and its taxonomic position was investigated by using a polyphasic study. Strain KIS14-15T grew optimally at 30 °C, at pH 6.0–7.0 and without NaCl. In the neighbour-joining phylogenetic tree based on 16S rRNA gene sequences, strain KIS14-15T formed a cluster with the strains of Reyranella massiliensis with a bootstrap resampling value of 100 %. Strain KIS14-15T exhibited 16S rRNA gene sequence similarity values of 98.0 % to R. massiliensis 521T and of less than 89 % to the type strains of other taxa. The mean level of DNA–DNA relatedness between strain KIS14-15T and R. massiliensis KACC 16548T was 21 % (reciprocal, 24 %). The predominant ubiquinone found in strain KIS14-15T and R. massiliensis KACC 16548T was ubiquinone-10 (Q-10). The predominant fatty acids of strain KIS14-15T and R. massiliensis KACC 16548T were C18 : 1ω7c, C18 : 1 2-OH and 11-methyl C18 : 1ω7c. Total polar lipids of strain KIS14-15T were phosphatidylmonomethylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, one unknown aminolipid and one unknown lipid. Differential phenotypic properties, together with phylogenetic and genetic distinctiveness, demonstrated that strain KIS14-15T is distinguishable from R. massiliensis . On the basis of the data presented, strain KIS14-15T is considered to represent a novel species of the genus Reyranella , for which the name Reyranella soli sp. nov. is proposed. The type strain is KIS14-15T ( = KACC 13034T = NBRC 108950T).

2012 ◽  
Vol 62 (Pt_9) ◽  
pp. 2050-2055 ◽  
Author(s):  
Yong-Taek Jung ◽  
Sooyeon Park ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-negative, non-motile, ovoid to rod-shaped bacterium, designated strain HWDM-33T, was isolated from seawater of the Yellow Sea, Korea, and was subjected to a polyphasic taxonomic study. Strain HWDM-33T grew optimally at pH 7–8, at 25 °C and in the presence of 2–3 % (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain HWDM-33T clustered with Erythrobacter gangjinensis K7-2T, with which it shared 96.9 % sequence similarity. Strain HWDM-33T exhibited 94.2–95.8 % 16S rRNA gene sequence similarity to the type strains of other recognized species of the genus Erythrobacter . Strain HWDM-33T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c, C17 : 1ω6c, and C16 : 1ω7c and/or iso-C15 : 0 2-OH as the major fatty acids. The major polar lipids were sphingoglycolipid, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine and an unidentified lipid. The DNA G+C content of strain HWDM-33T was 66.1 mol%. Differential phenotypic properties and phylogenetic distinctiveness demonstrated that strain HWDM-33T was separate from E. gangjinensis and other recognized species of the genus Erythrobacter . On the basis of the data presented here, strain HWDM-33T represents a novel species of the genus Erythrobacter , for which the name Erythrobacter marinus sp. nov. is proposed. The type strain is HWDM-33T ( = KCTC 23554T  = CCUG 60528T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1786-1793 ◽  
Author(s):  
Wallace Rafael Souza ◽  
Rafael Eduardo Silva ◽  
Michael Goodfellow ◽  
Kanungnid Busarakam ◽  
Fernanda Sales Figueiro ◽  
...  

Strain SB026T was isolated from Brazilian rainforest soil and its taxonomic position established using data from a polyphasic study. The organism showed a combination of chemotaxonomic and morphological features consistent with its classification in the genus Amycolatopsis and formed a branch in the Amycolatopsis 16S rRNA gene tree together with Amycolatopsis bullii NRRL B-24847T, Amycolatopsis plumensis NRRL B-24324T, Amycolatopsis tolypomycina DSM 44544T and Amycolatopsis vancoresmycina NRRL B-24208T. It was related most closely to A. bullii NRRL B-24847T (99.0 % 16S rRNA gene sequence similarity), but was distinguished from this strain by a low level of DNA–DNA relatedness (~46 %) and discriminatory phenotypic properties. Based on the combined genotypic and phenotypic data, it is proposed that the isolate should be classified in the genus Amycolatopsis as representing a novel species, Amycolatopsis rhabdoformis sp. nov. The type strain is SB026T ( = CBMAI 1694T = CMAA 1285T = NCIMB 14900T).


2012 ◽  
Vol 62 (Pt_6) ◽  
pp. 1348-1353 ◽  
Author(s):  
Hui-xian Wu ◽  
Pok Yui Lai ◽  
On On Lee ◽  
Xiao-jian Zhou ◽  
Li Miao ◽  
...  

A novel Gram-negative, aerobic, catalase- and oxidase-positive, non-sporulating, non-motile, rod-shaped bacterium, designated strain UST081027-248T, was isolated from seawater of the Red Sea. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain UST081027-248T fell within the genus Erythrobacter . Levels of 16S rRNA gene sequence similarity between the novel strain and the type strains of Erythrobacter species ranged from 95.3 % (with Erythrobacter gangjinensis ) to 98.2 % (with Erythrobacter citreus ). However, levels of DNA–DNA relatedness between strain UST081027-248T and the type strains of closely related species were below 70 %. Optimal growth of the isolate occurred in the presence of 2.0 % NaCl, at pH 8.0–9.0 and at 28–36 °C. The isolate did not produce bacteriochlorophyll a. The predominant cellular fatty acids were C17 : 1ω6c, summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c) and C15 : 0 2-OH. The genomic DNA G+C content of strain UST081027-248T was 60.4 mol%. Phenotypic properties and phylogenetic distinctiveness clearly indicated that strain UST081027-248T represents a novel species of the genus Erythrobacter , for which the name Erythrobacter pelagi sp. nov. is proposed. The type strain is UST081027-248T ( = JCM 17468T = NRRL 59511T).


2013 ◽  
Vol 63 (Pt_6) ◽  
pp. 2234-2238 ◽  
Author(s):  
Ahyoung Choi ◽  
Jang-Cheon Cho

Gram-negative strains, motile by a single polar flagellum, non-pigmented and with a curved rod-shaped morphology, designated IMCC1826T and IMCC1883, were isolated from a surface seawater sample from the Yellow Sea. The two strains shared 99.9 % 16S rRNA gene sequence similarity and showed 92 % DNA–DNA relatedness, suggesting that they belonged to the same genomic species. Phylogenetic analysis based on 16S rRNA gene sequences showed that the two isolates were related most closely to the type strain of Thalassolituus oleivorans with a sequence similarity of 96.4 % and formed a robust phyletic lineage with T. oleivorans . DNA–DNA relatedness between the two strains and T. oleivorans DSM 14913T was 8.7–11.6 %. A putative alkane hydroxylase (alkB) gene was detected in strain IMCC1826T by PCR, but the amino acid sequence of the gene was distantly related to that of the AlkB homologue of T. oleivorans DSM 14913T. As expected from the presence of the alkB gene, the new strains utilized n-tetradecane and n-hexadecane as a carbon source. The DNA G+C content was 54.6–56.0 mol% and the main isoprenoid quinone detected was Q-9. Polar lipids of strain IMCC1826T included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and amino-group-containing lipids. On the basis of taxonomic data obtained in this study, strains IMCC1826T and IMCC1883 represent a novel species of the genus Thalassolituus , for which the name Thalassolituus marinus sp. nov. is proposed, with IMCC1826T ( = KCTC 23084T = NBRC 107590T) as the type strain.


2012 ◽  
Vol 62 (Pt_6) ◽  
pp. 1359-1364 ◽  
Author(s):  
Soo-Young Lee ◽  
Sooyeon Park ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, ovoid or rod-shaped bacterial strain, designated L-6T, was isolated from seawater of Baekdo harbour of the East Sea in Korea and its taxonomic position was investigated by using a polyphasic study. Strain L-6T grew optimally at 30 °C, at pH 7.5–8.0 and in the presence of 2 % (w/v) NaCl. In the neighbour-joining phylogenetic tree based on 16S rRNA gene sequences, strain L-6T formed a cluster with the type strain of Celeribacter neptunius at a bootstrap resampling value of 100 %. Strain L-6T exhibited 16S rRNA gene sequence similarity values of 97.7 % to C. neptunius H 14T and of less than 96.2 % to the type strains of other species used in the phylogenetic analysis. The G+C content of the chromosomal DNA of strain L-6T was 60.9 mol%. The predominant ubiquinone found in strain L-6T and C. neptunius CIP 109922T was ubiquinone-10 (Q-10). The predominant fatty acid of strain L-6T and C. neptunius CIP 109922T was C18 : 1ω7c. The major polar lipids of strain L-6T were phosphatidylglycerol, one unidentified aminolipid and one unidentified lipid. The mean level of DNA–DNA relatedness between strain L-6T and C. neptunius CIP 109922T was 17 %. Differential phenotypic properties, together with phylogenetic and genetic distinctiveness, demonstrated that strain L-6T is distinguishable from C. neptunius . On the basis of the data presented, strain L-6T is considered to represent a novel species of the genus Celeribacter , for which the name Celeribacter baekdonensis sp. nov. is proposed. The type strain is L-6T ( = KCTC 23497T  = CCUG 60799T).


2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 163-168 ◽  
Author(s):  
Rosanna A. Alegado ◽  
Jonathan D. Grabenstatter ◽  
Richard Zuzow ◽  
Andrea Morris ◽  
Sherri Y. Huang ◽  
...  

A Gram-negative, non-motile, non-spore-forming bacterial strain, PR1T, was isolated from a mud core sample containing colonial choanoflagellates near Hog Island, Virginia, USA. Strain PR1T grew optimally at 30 °C and with 3 % (w/v) NaCl. Strain PR1T contained MK-7 as the major menaquinone as well as carotenoids but lacked pigments of the flexirubin-type. The predominant fatty acids were iso-C15 : 0 (29.4 %), iso-C17 : 1ω9c (18.5 %) and summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c; 11.3 %). The major polar lipids detected in strain PR1T were phosphatidylethanolamine, an unknown phospholipid, an aminophospholipid, an aminolipid and two lipids of unknown character. The DNA G+C content was 38.7 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain PR1T fell within the cluster comprising the genus Algoriphagus and was most closely related to Algoriphagus halophilus JC 2051T (95.4 % sequence similarity) and Algoriphagus lutimaris S1-3T (95.3 % sequence similarity). The 16S rRNA gene sequence similarity between strain PR1T and the type strains of other species of the genus Algoriphagus were in the range 91–95 %. Differential phenotypic properties and phylogenetic and genetic distinctiveness of strain PR1T demonstrated that this strain was distinct from other members of the genus Algoriphagus , including its closest relative, A. halophilus . Based on phenotypic, chemotaxonomic, phylogenetic and genomic data, strain PR1T should be placed in the genus Algoriphagus as a representative of a novel species, for which the name Algoriphagus machipongonensis sp. nov. is proposed. The type strain is PR1T ( = ATCC BAA-2233T  = DSM 24695T).


2013 ◽  
Vol 63 (Pt_9) ◽  
pp. 3154-3157 ◽  
Author(s):  
Fei Zhao ◽  
Xin-qi Guo ◽  
Peng Wang ◽  
Lin-yan He ◽  
Zhi Huang ◽  
...  

A Gram-stain-negative, aerobic, motile with one polar flagellum γ-proteobacterium, designated strain SBZ3-12T, was isolated from surfaces of weathered potassic trachyte. Phylogenetic analysis of this strain based on 16S rRNA gene sequences showed that it was most closely related to Dyella japonica XD53T (97.9 % 16S rRNA gene sequence similarity), Dyella terrae JS14-6T (97.7 %), Dyella soli JS12-10T (97.5 %) and Dyella koreensis BB4T (97.0 %). The DNA G+C content of strain SBZ3-12T was 64.0 mol%. In addition, iso-C17 : 1ω9c, iso-C15 : 0 and iso-C16 : 0 were the major cellular fatty acids and ubiquinone Q-8 was the predominant respiratory quinone. The low DNA–DNA relatedness values between strain SBZ3-12T and recognized species of the genus Dyella and the many phenotypic properties supported the classification of strain SBZ3-12T as a representative of a novel species of the genus Dyella , for which the name Dyella jiangningensis sp. nov. is proposed. The type strain is SBZ3-12T ( = CCTCC AB 2012160T = KACC 16539T = DSM 26119T).


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1696-1701 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Mi-Hwa Lee ◽  
Yong-Taek Jung

A Gram-negative, non-spore-forming, aerobic, non-flagellated, non-gliding rod, designated YCS-9T, was isolated from seawater in the South Sea, South Korea. Strain YCS-9T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 2 % (w/v) NaCl. In the neighbour-joining phylogenetic tree based on 16S rRNA gene sequences, strain YCS-9T fell within the family Flavobacteriaceae and formed a cluster with Fulvibacter tottoriensis MTT-39T with a bootstrap resampling value of 75.4 %. Strain YCS-9T showed 92.3 % 16S rRNA gene sequence similarity to F. tottoriensis MTT-39T and 89.0–93.7 % sequence similarity to the other strains used in the phylogenetic analysis. Strain YCS-9T contained MK-6 as the only menaquinone and iso-C15 : 1 G, iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. The major polar lipids were one unidentified lipid and one unidentified aminolipid. The DNA G+C content was 34.2 mol%. Strain YCS-9T could be differentiated from F. tottoriensis NBRC 102624T by differences in fatty acid composition, polar lipid profile and some phenotypic properties. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain YCS-9T represents a novel species in a new genus within the phylum Bacteroidetes , for which the name Pseudofulvibacter geojedonensis gen. nov., sp. nov. is proposed. The type strain of Pseudofulvibacter geojedonensis is YCS-9T ( = KCTC 23884T  = CCUG 62114T). An emended description of the genus Fulvibacter is also presented.


2013 ◽  
Vol 63 (Pt_10) ◽  
pp. 3704-3709 ◽  
Author(s):  
Sooyeon Park ◽  
Jung-Sook Lee ◽  
Keun-chul Lee ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-flagellated, rod-shaped bacterial strain able to move by gliding, designated WS-MY9T, was isolated from a brown algae reservoir in South Korea. Strain WS-MY9T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 2 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain WS-MY9T clustered with the type strain of Algibacter lectus with a bootstrap resampling value of 100 %. Strain WS-MY9T exhibited 16S rRNA gene sequence similarity values of 98.5 and 96.7 % to the type strains of A. lectus and Algibacter mikhailovii , respectively, and less than 96.1 % sequence similarity to other members of the family Flavobacteriaceae . Strain WS-MY9T contained MK-6 as the predominant menaquinone and anteiso-C15 : 0, iso-C17 : 0 3-OH, iso-C15 : 1 G and iso-C15 : 0 as the major fatty acids. The major polar lipids of strain WS-MY9T were phosphatidylethanolamine and two unidentified lipids. The DNA G+C content of strain WS-MY9T was 35.0 mol% and its DNA–DNA relatedness value with A. lectus KCTC 12103T was 15 %. The phylogenetic and genetic distinctiveness and differential phenotypic properties revealed that strain WS-MY9T is separate from the two recognized species of the genus Algibacter . On the basis of the data presented, strain WS-MY9T represents a novel species of the genus Algibacter , for which the name Algibacter undariae sp. nov. is proposed. The type strain is WS-MY9T ( = KCTC 32259T = CCUG 63684T).


2012 ◽  
Vol 62 (Pt_6) ◽  
pp. 1265-1270 ◽  
Author(s):  
Sathiyaraj Srinivasan ◽  
Myung Kyum Kim ◽  
Sangyong Lim ◽  
Minho Joe ◽  
Myungjin Lee

A Gram-stain-positive, strictly aerobic, spherical, non-motile red-pigmented bacterial strain, designated MJ27T, was isolated from a sludge sample of the Daejeon sewage disposal plant in South Korea. A polyphasic approach was used to study the taxonomic position of strain MJ27T. Strain MJ27T shared highest 16S rRNA gene sequence similarity with Deinococcus grandis DSM 3963T (98.8 %), Deinococcus caeni Ho-08T (97.5 %) and Deinococcus aquaticus PB314T (96.6 %.); levels of sequence similarity with the type strains of other Deinococcus species were less than 96.0 %. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain MJ27T belonged to the clade formed by members of the genus Deinococcus in the family Deinococcaceae . The G+C content of the genomic DNA of strain MJ27T was 67.6 mol%. The chemotaxonomic characteristics of strain MJ27T were typical of members of the genus Deinococcus , with MK-8 as the predominant respiratory quinone, C16 : 1ω7c, C15 : 1ω6c, C16 : 0 and C15 : 0 as major fatty acids (>12 %), ornithine as the diamino acid in the cell-wall peptidoglycan and resistance to gamma radiation [D10 (dose required to reduce the bacterial population by tenfold) >9 kGy]. The low levels of DNA–DNA relatedness reported here (5.3±1.5–29.2±2.3 %) indicate that strain MJ27T represents a species that is separate from its closest relatives in the genus Deinococcus . On the basis of phylogenetic inference, fatty acid profile and other phenotypic properties, strain MJ27T is considered to represent a novel species of the genus Deinococcus , for which the name Deinococcus daejeonensis sp. nov. is proposed. The type strain is MJ27T ( = KCTC 13751T = JCM 16918T).


Sign in / Sign up

Export Citation Format

Share Document