scholarly journals Mucilaginibacter pineti sp. nov., isolated from Pinus pinaster wood from a mixed grove of pines trees

2014 ◽  
Vol 64 (Pt_7) ◽  
pp. 2223-2228 ◽  
Author(s):  
Gabriel Paiva ◽  
Pedro Abreu ◽  
Diogo Neves Proença ◽  
Susana Santos ◽  
Maria Fernanda Nobre ◽  
...  

Bacterial strain M47C3BT was isolated from the endophytic microbial community of a Pinus pinaster tree branch from a mixed grove of pines. Phylogenetic analysis of 16S rRNA gene sequences showed that this organism represented one distinct branch within the family Sphingobacteriaceae , most closely related to the genus Mucilaginibacter . Strain M47C3BT formed a distinct lineage, closely related to Mucilaginibacter dorajii KACC 14556T, with which it shared 97.2 % 16S rRNA gene sequence similarity. The other members of the genus Mucilaginibacter included in the same clade were Mucilaginibacter lappiensis ATCC BAA-1855T sharing 97.0 % similarity and Mucilaginibacter composti TR6-03T that had a lower similarity (95.7 %). The novel strain was Gram-staining-negative, formed rod-shaped cells, grew optimally at 26 °C and at pH 7, and was able to grow with up to 0.3 % (w/v) NaCl. The respiratory quinone was menaquinone 7 (MK-7) and the major fatty acids of the strain were summed feature 3 (C16 : 1ω7c/iso-C15 : 0 2-OH), iso-C15 : 0 and iso-C17 : 0 3-OH, representing 73.5 % of the total fatty acids. The major components of the polar lipid profile of strain M47C3BT consisted of phosphatidylethanolamine, three unidentified aminophospholipids, one unidentified aminolipid and three unidentified polar lipids. The G+C content of the DNA was 40.6 mol%. On the basis of the phylogenetic analysis and physiological and biochemical characteristics we propose the name Mucilaginibacter pineti sp. nov. for the novel species represented by strain M47C3BT ( = CIP 110632T = LMG 28160T).

2014 ◽  
Vol 64 (Pt_4) ◽  
pp. 1237-1243 ◽  
Author(s):  
Diogo Neves Proença ◽  
Maria Fernanda Nobre ◽  
Paula V. Morais

Bacterial strain A37T2T was isolated from the endophytic microbial community of a Pinus pinaster tree trunk and characterized. Strain A37T2T was Gram-stain-negative, formed rod-shaped cells, and grew optimally at 26–30 °C and at pH 5.5–7.5. The G+C content of the DNA was 46.6 mol%. The major respiratory quinone was menaquinone 7 (MK-7) and the major fatty acids were C16 : 1ω5c and iso-C15 : 0, representing 61.7 % of the total fatty acids. The polar lipids consisted of phosphatidylethanolamine, four unidentified aminophospholipids, one unidentified phospholipid, two unidentified aminolipids and three unidentified lipids. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain A37T2T belonged to the family Chitinophagaceae , forming a distinct branch with Chitinophaga niabensis JS13-10T within the genus Chitinophaga . Strain A37T2T shared between 92.7 and 95.1 % 16S rRNA gene sequence similarity with the type strains of species of the genus Chitinophaga . The phylogenetic, phenotypic and chemotaxonomic data presented indicate that strain A37T2T represents a novel species of the genus Chitinophaga , for which the name Chitinophaga costaii sp. nov. is proposed. The type strain is A37T2T ( = CIP 110584T = LMG 27458T). An emended description of Chitinophaga niabensis JS13-10T is also proposed.


2020 ◽  
Vol 70 (4) ◽  
pp. 2657-2663 ◽  
Author(s):  
Shasha Wang ◽  
Lijing Jiang ◽  
Xuewen Liu ◽  
Suping Yang ◽  
Zongze Shao

Strains 1-1NT and GYSZ_1T were isolated from marine sediments collected from the coast of Xiamen, PR China. Cells of the two strains were Gram-stain-negative, rod-shaped or slightly curved. Strain 1-1NT was non-motile, whereas strain GYSZ_1T was motile by means of one polar flagellum. The temperature, pH and salinity concentration ranges for growth of 1-1NT were 10–45 °C (optimum 30 °C), pH 5.5–8.0 (optimum 7.0) and 0–90 g l−1 NaCl (optimum 50 g l−1), while the growth of GYSZ_1T occurred at 4–45 °C (optimum 33 °C), pH 5.0–8.5 (optimum 6.5) and 5–90 g l−1 NaCl (optimum 20 g l−1). The two novel isolates were obligate chemolithoautotrophs capable of growth using hydrogen, thiosulfate, sulfide or elemental sulfur as the sole energy source, and nitrate, elemental sulfur or molecular oxygen as an electron acceptor. The major fatty acids of 1-1NT were C16 : 1ω7c, C16 : 0, C18 : 1ω7c and C18 : 0, while the predominant fatty acids of strain GYSZ_1T were C16 : 1ω7c, C16 : 0, C18 : 1ω7c and C14 : 0 3-OH. The DNA G+C contents of 1-1NT and GYSZ_1T were 34.5 mol% and 33.2 mol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that 1-1NT and GYSZ_1T represented members of the genus Sulfurimonas , with the highest sequence similarities to Sulfurimonas crateris SN118T (97.4 %) and Sulfurimonas denitrificans DSM 1251T (94.7 %), respectively. However, 1-1NT and GYSZ_1T shared 95.5 % similarity of 16S rRNA gene sequences, representing different species of the genus Sulfurimonas . On the basis of the physiological properties and the results of phylogenetic analyses, including average nucleotide identity and in silico DNA–DNA hybridization values, strains 1-1NT and GYSZ_1T represent two novel species within the genus Sulfurimonas , for which the names Sulfurimonas xiamenensis sp. nov. and Sulfurimonas lithotrophica sp. nov. are proposed, with the type strains 1-1NT (=MCCC 1A14514T=KCTC 15851T) and GYSZ_1T (=MCCC 1A14739T=KCTC 15853T), respectively. Our results also justify an emended description of the genus Sulfurimonas .


Author(s):  
Selma Vieira ◽  
Katharina J. Huber ◽  
Meina Neumann-Schaal ◽  
Alicia Geppert ◽  
Manja Luckner ◽  
...  

Members of the metabolically diverse order Nitrosomonadales inhabit a wide range of environments. Two strains affiliated with this order were isolated from soils in Germany and characterized by a polyphasic approach. Cells of strains 0125_3T and Swamp67T are Gram-negative rods, non-motile, non-spore-forming, non-capsulated and divide by binary fission. They tested catalase-negative, but positive for cytochrome c-oxidase. Both strains form small white colonies on agar plates and grow aerobically and chemoorganotrophically on SSE/HD 1 : 10 medium, preferably utilizing organic acids and proteinaceous substrates. Strains 0125_3T and Swamp67T are mesophilic and grow optimally without NaCl addition at slightly alkaline conditions. Major fatty acids are C16 : 1  ω7c, C16 : 0 and C14 : 0. The major polar lipids are diphosphatidylglycerol, phosphatidylethanolamine and phosphatidyglycerol. The predominant respiratory quinone is Q-8. The G+C content for 0125_3T and Swamp67T was 67 and 66.1 %, respectively. The 16S rRNA gene analysis indicated that the closest relatives (<91 % sequence similarity) of strain 0125_3T were Nitrosospira multiformis ATCC 25196T, Methyloversatilis universalis FAM5T and Denitratisoma oestradiolicum AcBE2-1T, while Nitrosospira multiformis ATCC 25196T, Nitrosospira tenuis Nv1T and Nitrosospira lacus APG3T were closest to strain Swamp67T. The two novel strains shared 97.4 % 16S rRNA gene sequence similarity with one another and show low average nucleotide identity of their genomes (83.8 %). Based on the phenotypic, chemotaxonomic, genomic and phylogenetic analysis, we propose the two novel species Usitatibacter rugosus sp. nov (type strain 0125_3T=DSM 104443T=LMG 29998T=CECT 9241T) and Usitatibacter palustris sp. nov. (type strain Swamp67T=DSM 104440T=LMG 29997T=CECT 9242T) of the novel genus Usitatibacter gen. nov., within the novel family Usitatibacteraceae fam. nov.


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1132-1137 ◽  
Author(s):  
Li-Na Sun ◽  
Jun Zhang ◽  
Soon-Wo Kwon ◽  
Jian He ◽  
Shun-Gui Zhou ◽  
...  

A facultatively anaerobic, non-spore-forming, non-motile, catalase- and oxidase-positive, Gram-reaction-negative, coccoid to short rod-shaped strain, designated FLN-7T, was isolated from activated sludge of a wastewater biotreatment facility. The strain was able to hydrolyse amide pesticides (e.g. diflubenzuron, propanil, chlorpropham and dimethoate) through amide bond cleavage. Strain FLN-7T grew at 4–42 °C (optimum 28 °C), at pH 5.0–8.0 (optimum pH 7.0) and with 0–5.0 % (w/v) NaCl (optimum 1.0 %). The major respiratory quinone was ubiquinone-10. The major cellular fatty acid was C18 : 1ω7c. The genomic DNA G+C content of strain FLN-7T was 66.4±0.5 mol%. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylcholine and an unidentified glycolipid. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain FLN-7T was a member of the genus Paracoccus and showed highest 16S rRNA gene sequence similarities with Paracoccus aminovorans JCM 7685T (99.2 %), P. denitrificans DSM 413T (97.8 %), P. yeei CDC G1212T (97.3 %) and P. thiocyanatus THI 011T (97.1 %). Strain FLN-7T showed low DNA–DNA relatedness with P. aminovorans KACC 12261T (36.5±3.4 %), P. denitrificans KACC 12251T (30.5±2.6 %), P. yeei CCUG 46822T (26.2±2.4 %) and P. thiocyanatus KACC 13901T (15.5±0.9 %). Based on the phylogenetic analysis, DNA–DNA hybridization, whole-cell fatty acid composition and biochemical characteristics, strain FLN-7T was clearly distinguished from all recognized species of the genus Paracoccus and should be classified in a novel species, for which the name Paracoccus huijuniae sp. nov. is proposed. The type strain is FLN-7T ( = KACC 16242T  = ACCC 05690T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1007-1012 ◽  
Author(s):  
Pok Yui Lai ◽  
Li Miao ◽  
On On Lee ◽  
Ling-Li Liu ◽  
Xiao-Jian Zhou ◽  
...  

A slow-growing, strictly aerobic, Gram-negative, coccus bacterial strain, designated KAUST100406-0324T, was isolated from sea-floor sediment collected from the Red Sea, Saudi Arabia. The catalase- and oxidase-positive strain was non-sporulating and only slightly halophilic. Optimum growth occurred at 20–25 °C and at pH values ranging from 7.0 to 8.0. The major cellular fatty acids of the strain were unsaturated C18 : 1ω6c and/or C18 : 1ω7c, C18 : 1ω7c 11-methyl and C16 : 1ω7c and/or C16 : 1ω6c. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine and two unidentified phospholipids. Ubiquinone 10 was the predominant lipoquinone. The DNA G+C content of strain KAUST100406-0324T was 64.0 mol%. Phylogenetic analysis of 16S rRNA gene sequences revealed that the novel strain belonged to the family Rhodobacteraceae of the class Alphaproteobacteria but formed a distinct evolutionary lineage from other bacterial species with validly published names. The 16S rRNA gene sequence of the novel strain was distantly related, but formed a monophyletic cluster with, those of bacteria from two moderately halophilic genera, Hwanghaeicola and Maribius . The similarity of the sequence between the novel strain KAUST100406-0324T and the type strains Hwanghaeicola aestuarii Y26T (accession number FJ230842), Maribius pelagius B5-6T (DQ514326) and Maribius salinus CL-SP27T (AY906863) were 94.5 %, 95.2 % and 95.3 %, respectively. Based on the physiological, phylogenetic and chemotaxonomic characteristics presented in this study, we propose that this strain represents a novel species of a new genus in the family Rhodobacteraceae , for which the name of Profundibacterium mesophilum gen. nov., sp. nov. was proposed, with KAUST100406-0324T ( = JCM 17872T  = NRRL B-59665T) as the type strain.


2013 ◽  
Vol 63 (Pt_6) ◽  
pp. 2301-2308 ◽  
Author(s):  
Byoung-Jun Kim ◽  
Seok-Hyun Hong ◽  
Hee-Kyung Yu ◽  
Young-Gil Park ◽  
Joseph Jeong ◽  
...  

A previously undescribed, slowly growing, non-chromogenic Mycobacterium strain (299T) was isolated from the sputum sample of a patient with a symptomatic pulmonary infection. Phenotypically, strain 299T was generally similar to Mycobacterium koreense DSM 45576T and Mycobacterium triviale ATCC 23292T. The 16S rRNA gene sequence of strain 299T was similar to that of M. koreense DSM 45576T (GenBank accession no. AY734996, 99.5 % similarity); however, it differed substantially from that of M. triviale ATCC 23292T (X88924, 98.2 %). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 299T clustered together with M. koreense DSM 45576T and M. triviale ATCC 23292T, supported by high bootstrapping values (99 %). Unique mycolic acid profiles and phylogenetic analysis based on two different chronometer molecules, the hsp65 and rpoB genes, strongly supported the taxonomic status of this strain as representing a distinct species. These data support the conclusion that strain 299T represents a novel mycobacterial species, for which the name Mycobacterium parakoreense sp. nov. is proposed. The type strain is 299T ( = DSM 45575T = KCTC 19818T).


2012 ◽  
Vol 62 (Pt_8) ◽  
pp. 1997-2003 ◽  
Author(s):  
Fehmida Bibi ◽  
Eu Jin Chung ◽  
Ajmal Khan ◽  
Che Ok Jeon ◽  
Young Ryun Chung

During a study of endophytic bacteria from coastal dune plants, a bacterial strain, designated YC6881T, was isolated from the root of Rosa rugosa collected from the coastal dune areas of Namhae Island, Korea. The bacterium was found to be Gram-staining-negative, motile, halophilic and heterotrophic with a single polar flagellum. Strain YC6881T grew at temperatures of 4–37 °C (optimum, 28–32 °C), at pH 6.0–9.0 (optimum, pH 7.0–8.0), and at NaCl concentrations in the range of 0–7.5 % (w/v) (optimum, 4–5 % NaCl). Strain YC6881T was catalase- and oxidase-positive and negative for nitrate reduction. According to phylogenetic analysis using 16S rRNA gene sequences, strain YC6881T belonged to the genus Rhizobium and showed the highest 16S rRNA gene sequence similarity of 96.9 % to Rhizobium rosettiformans , followed by Rhizobium borbori (96.3 %), Rhizobium radiobacter (96.1 %), Rhizobium daejeonense (95.9 %), Rhizobium larrymoorei (95.6 %) and Rhizobium giardinii (95.4 %). Phylogenetic analysis of strain YC6881T by recA, atpD, glnII and 16S–23S intergenic spacer (IGS) sequences all confirmed the phylogenetic arrangements obtained by using 16S rRNA gene sequences. Cross-nodulation tests showed that strain YC6881T was a symbiotic bacterium that nodulated Vigna unguiculata and Pisum sativum. The major components of the cellular fatty acids were C18 : 1ω7c (53.7 %), C19 : 0 cyclo ω8c (12.6 %) and C12 : 0 (8.1 %). The DNA G+C content was 52.8 mol%. Phenotypic and physiological tests with respect to carbon source utilization, antibiotic resistance, growth conditions, phylogenetic analyses of housekeeping genes recA, atpD and glnII, and fatty acid composition could be used to discriminate strain YC6881T from other species of the genus Rhizobium in the same sublineage. Based on the results obtained in this study, strain YC6881T is considered to represent a novel species of the genus Rhizobium , for which the name Rhizobium halophytocola sp. nov. is proposed. The type strain is YC6881T ( = KACC 13775T = DSM 21600T).


2020 ◽  
Vol 70 (5) ◽  
pp. 3427-3432 ◽  
Author(s):  
Guanghua Wang ◽  
Xinfeng Zheng ◽  
Shuailiang Xu ◽  
Ge Dang ◽  
Hongfei Su ◽  
...  

A Gram-stain-negative, non-spore-forming, aerobic, curved rod-shaped bacterium, designed strain R142T, was isolated from a coralline algae Tricleocarpa sp. in the Beibu Gulf, China. Optimal growth occurred with 0–0.5 % (w/v) NaCl, at 25 °C and at pH 8. Global alignment based on 16S rRNA gene sequences indicated that strain R142T shared 93.8 % similarity with its closest type strain, Pseudomaricurvus alkylphenolicus KU14GT. Phylogenetic analyses showed that strain R142T forms a distinct branch alongside Maricurvus nonylphenolicus KU41ET, Pseudoteredinibacter isoporae SW-11T, Pseudomaricurvus alkylphenolicus KU14GT, Pseudomaricurvus alcaniphilus MEBiC06469T and Aestuariicella hydrocarbonica SM-6T. The major polar lipids of strain R142T were phosphatidylethanolamine and phosphatidylglycerol. The primary cellular fatty acids were C16 : 0, C16 : 1ω7c, C18 : 1ω7c, C18 : 0 and C14 : 0. The genome DNA G+C ratio was 56.4 mol%. The only detected respiratory quinone was ubiquinone 8. The low 16S rRNA gene sequence similarity and differences in cellular fatty acids readily distinguished strain R142T from all validly published type strains. Strain R142T is therefore suggested to represent a novel species of a new genus, for which the name Exilibacterium tricleocarpae gen. nov., sp. nov. is proposed. The type strain of Exilibacterium tricleocarpae is R142T (=MCCC 1K03816T=KCTC 72138T).


2020 ◽  
Vol 70 (11) ◽  
pp. 5888-5898 ◽  
Author(s):  
María Paula Parada-Pinilla ◽  
Carolina Díaz-Cárdenas ◽  
Gina López ◽  
Jorge Iván Díaz-Riaño ◽  
Laura N. Gonzalez ◽  
...  

Two morphologically similar halophilic strains, named USBA 874 and USBA 960T, were isolated from water and sediment samples collected from the Zipaquirá salt mine in the Colombian Andes. Both isolates had non-spore-forming, Gram-stain-negative and motile cells that grew aerobically. The strains grew optimally at 30 °C, pH 7.0 and with 25 % NaCl (w/v). The isolates showed almost identical 16S rRNA gene sequences (99.0 % similarity). The predominant quinones of USBA-960T were Q-8, Q-7 and Q-9. The major cellular fatty acids were C19 : 0 cyclo ω8c, C18 : 0 and C16 : 0. According to 16S rRNA gene sequencing, the closest phylogenetic relatives are Salinisphaera species (similarity between 93.6 and 92.3 %), Abyssibacter profundi OUC007T (88.6 %) and Oceanococcus atlanticus 22II-S10r2T (88.7 %). In addition, the result of genome blast distance phylogeny analysis between strains USBA 874 and USBA 960T, Salinisphaera halophila (YIM 95161T), Salinisphaera shabanensis (E1L3AT), Salinisphaera orenii (MK-B5T) and Salinisphaera japonica (YTM-1T) was 18.5 %. Other in silico species delineation analyses also showed low identity such as ANIb and ANIm values (<69.0 and <84.0 % respectively), TETRA (<0.81) and AAI values (<0.67). Genome sequencing of USBA 960T revealed a genome size of 2.47 Mbp and a G+C content of 59.71 mol%. Phylogenetic analysis of strains USBA 874 and USBA 960T indicated that they formed a different lineage within the family Salinisphaeraceae . Based on phenotypic and chemotaxonomic characteristics, phylogenetic analysis and DNA–DNA relatedness values, along with identity at whole genome level, it can be concluded that strains USBA 960T and USBA 874 represent a novel genus of the family Salinisphaeraceae and the name Salifodinibacter halophilus gen. nov., sp. nov. is proposed. The type strain is USBA 960T (CMPUJ U095T=CECT 30006T).


2014 ◽  
Vol 64 (Pt_5) ◽  
pp. 1552-1558 ◽  
Author(s):  
Soo-Jin Kim ◽  
Ji-Young Moon ◽  
Hang-Yeon Weon ◽  
Seung-Beom Hong ◽  
Soon-Ja Seok ◽  
...  

A Gram-stain-negative bacterium, strain 5410S-62T, was isolated from an air sample collected in Suwon, Republic of Korea. It was aerobic, motile, mesophilic and formed rod-shaped cells. Colonies on R2A agar were convex, circular and pale orange with entire margins. Growth occurred at pH 5–9 (optimally at pH 7) and at 10–40 °C (optimally at 28 °C). It did not grow in the presence of 1 % NaCl. Comparative analyses of 16S rRNA gene sequences demonstrated that the novel strain was closely related to members of the genus Noviherbaspirillum . Strain 5410S-62T showed the highest sequence similarity (98.2 %) to Glaciimonas singularis A2-57T. It also showed high 16S rRNA gene sequence similarity (98.1–95.6 %) to members of the genus Noviherbaspirillum (98.1 % to Noviherbaspirillum aurantiacum SUEMI08T, 97.8 % to Noviherbaspirillum soli SUEMI10T and Noviherbaspirillum canariense SUEMI03T, 97.6 % to Noviherbaspirillum psychrotolerans PB1T and 95.6 % to Noviherbaspirillum malthae CC-AFH3T). The strain contained summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c), C16 : 0 and summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c) as major fatty acids, Q-8 as the only ubiquinone and large amounts of phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. Strain 5410S-62T revealed less than 70 % DNA–DNA relatedness with the type strains of closely related species of the genera Noviherbaspirillum and Herbaspirillum and Glaciimonas singularis . Based on the physiological, biochemical and chemotaxonomic data obtained in this study, it is proposed that strain 5410S-62T represents a novel species, Noviherbaspirillum suwonense sp. nov., with 5410S-62T ( = KACC 16657T =  NBRC 108944T) as the type strain.


Sign in / Sign up

Export Citation Format

Share Document