scholarly journals Psychrobium conchae gen. nov., sp. nov., a psychrophilic marine bacterium isolated from the Iheya North hydrothermal field

2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3668-3675 ◽  
Author(s):  
Yuichi Nogi ◽  
Mariko Abe ◽  
Shinsuke Kawagucci ◽  
Hisako Hirayama

A novel psychrophilic, marine, bacterial strain designated BJ-1T was isolated from the Iheya North hydrothermal field in the Okinawa Trough off Japan. Cells were Gram-negative, rod-shaped, non-spore-forming, aerobic chemo-organotrophs and motile by means of a single polar flagellum. Growth occurred at temperatures below 16 °C, with the optimum between 9 and 12 °C. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that the closest relatives of strain BJ-1T were Shewanella denitrificans OS-217T (93.5 % similarity), Shewanella profunda DSM 15900T (92.9 %), Shewanella gaetbuli TF-27T (92.9 %), Paraferrimonas sedimenticola Mok-106T (92.1 %) and Ferrimonas kyonanensis Asr22-7T (91.7 %). The major respiratory quinone was Q-8. The predominant fatty acids were C16 : 1ω7c and C16 : 0. The G+C content of the novel strain was 40.5 mol%. Based on phylogenetic, phenotypic and chemotaxonomic evidence, it is proposed that strain BJ-1T represents a novel species in a new genus, for which the name Psychrobium conchae gen. nov., sp. nov. is proposed. The type strain of Psychrobium conchae is BJ-1T ( = JCM 30103T = DSM 28701T).

2020 ◽  
Vol 70 (11) ◽  
pp. 5854-5860 ◽  
Author(s):  
Lijun Liu ◽  
Shuang Wang ◽  
Shun Zhou ◽  
Wen Sun ◽  
Tianyu Fu ◽  
...  

A Gram-stain-negative, strictly aerobic, motile by gliding, rod-shaped and non-flagellated marine bacterium strain, designated BOM4T, was isolated from a mussel inhabiting the Tangyin hydrothermal field of the Okinawa Trough. The growth temperature was in the range of 16–40 °C, and the optimum temperature was 37 °C. Optimal growth occurred at pH 7.0 and in the presence of 1 % (w/v) NaCl. The predominant isoprenoid quinone of strain BOM4T was identified as menaquinone-6 (MK-6). The predominant fatty acids (>10 %) were iso-C15 : 0(43.8 %) and iso-C17 : 0 3-OH (17.5 %). The major polar lipids comprised one phosphatidylethanolamine, three unidentified aminolipids and two unidentified lipids. Based on 16S rRNA gene sequence analyses, strain BOM4T was found to be most closely related to Gramella aestuarii JCM 17790T (96.7 %), followed by Gramella flava JLT2011T (96.1 %), Gramella sediminilitoris GHTF-27T (95.6 %) and Gramella gaetbulicola RA5-111T (95.5 %) and with lower sequence similarities (93.7- 95.4 %) to other species of the genus Gramella . Genome relatedness between strain BOM4T and G. aestuarii JCM 17790T was computed using both average nucleotide identity and DNA–DNA hybridization with values of 75.6 and 19.3±2.4 %, respectively. The DNA G+C content of strain BOM4T was 41.4 mol%. On the basis of polyphasic analysis, strain BOM4T was considered to represent a novel species of the genus Gramella , for which the name Gramella bathymodioli sp. nov. is proposed. The type strain is BOM4T (=MCCC 1K03735T=JCM 33424T).


Author(s):  
Nantawan Niemhom ◽  
Chanwit Suriyachadkun ◽  
Chokchai Kittiwongwattana

Two Gram-stain-negative, non-motile, rod-shaped bacterial strains were isolated from the surfaces of rice roots. They were designated as strains 1303T and 1310. Their colonies were circular, entire, opaque, convex and yellow. They were chitinase- and catalase-positive, reduced nitrate and grew at 16–37 °C (optimum, 30 °C), pH 5.0–10.0 (optimum, pH 7.0) and 0–2.0% NaCl (optimum, 1.0 %). Based on the 16S rRNA gene sequence analysis, they were classified as members of the genus Chitinophaga . Results of phylogenetic and phylogenomic analyses indicated that they formed a cluster with Chitinophaga eiseniae YC6729T, Chitinophaga qingshengii JN246T, Chitinophaga varians 10-7 W-9003T and Chitinophaga fulva G-6-1-13T. When the genomic sequences of strains 1303T and 1310 were compared with their close relatives, the average nucleotide identity and digital DNA–DNA hybridization values were below the cut-off levels. Phosphatidylethanolamine was the major polar lipid. MK-7 was the major respiratory quinone. iso-C15 : 0, C16 : 1  ω5c, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1  ω7c/C16 : 1  ω6c) were the predominant fatty acids. Differential characteristics between both strains and their close relatives were also observed. Based on the distinctions in genotypic, phenotypic and chemotypic features, strains 1303T and 1310 represent members of a novel species of the genus Chitinophaga , for which the name Chitinophaga oryzae sp. nov. is proposed. The type strain is 1303T (=KACC 22075T=TBRC 12926T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 886-892 ◽  
Author(s):  
Kun Dong ◽  
Fang Chen ◽  
Yan Du ◽  
Gejiao Wang

A Gram-negative, strictly aerobic, yellow-pigmented rod, designated DK69T, was isolated from soil collected from the waste liquid treatment facility of Bafeng Pharmaceutical Company in the city of Enshi, Hubei Province, China. Phylogenetic analysis based on 16S rRNA gene sequences placed strain DK69T in the genus Flavobacterium of the family Flavobacteriaceae . The highest 16S rRNA gene sequence similarities were found with Flavobacterium cauense R2A-7T (96.9 %), Flavobacterium saliperosum AS 1.3801T (96.3 %) and Flavobacterium suncheonense GH29-5T (95.7 %). The major fatty acids (≥5 %) were iso-C15 : 0, iso-C17 : 1ω9c, C15 : 0, iso-C17 : 0 3-OH and iso-C15 : 0 3-OH. The major polar lipids were phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid. The major respiratory quinone was menaquinone-6. The genomic DNA G+C content was 34.4 mol%. Strain DK69T represents a novel species of the genus Flavobacterium , for which the name Flavobacterium enshiense sp. nov. is proposed. The type strain is DK69T ( = CCTCC AB 2011144T  = KCTC 23775T). Emended descriptions of the genus Flavobacterium and Flavobacterium cauense , Flavobacterium saliperosum and Flavobacterium suncheonense are also proposed.


Author(s):  
Veeraya Weerawongwiwat ◽  
Jong-Hwa Kim ◽  
Jung-Hoon Yoon ◽  
Min Kuk Suh ◽  
Han Sol Kim ◽  
...  

A novel bacterium, designated strain CAU 1637T, was isolated from a tidal mudflat. Cells of strain CAU 1637T were Gram-stain-negative, aerobic, motile with single flagellum and rod-shaped. The optimum conditions for growth were observed at 30 °C, pH 6.0 and in the presence of 2 % (w/v) NaCl. The respiratory quinone was ubiquinone-10. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain CAU 1637T was closely related to the genus Roseibium , with the highest similarity to Roseibium aestuarii NRBC 112946T (97.4 %), followed by Roseibium hamelinense NRBC 16783T (96.8 %), Roseibium aquae JCM 19310T (96.4 %), Roseibium sediminis KCTC 52373T (95.8 %) and Roseibium denhamense JCM 10543T (95.3 %). The predominant cellular fatty acids were C18 : 1  ω7c 11-methyl and summed feature 8 (C18 : 1  ω7c and/or C18 : 1  ω6c). The major polar lipids consisted of diphosphatidylglycerol and phosphatidylglycerol. The average nucleotide identity values between the novel isolate and related strains ranged from 71.0 to 76.4 %, and the DNA−DNA hybridization values ranged from 19.3 to 20.3 %. The G+C content was 58.4 mol% and the whole-genome size was 4.6 Mb, which included 17 contigs and 3931 protein-coding genes. Based on the taxonomic data, strain CAU 1637T represents a novel species of the genus Roseibium , for which the name Roseibium limicola sp. nov. is proposed. The type strain is CAU 1637T (=KCTC 82429T=MCCC 1K06080T).


2015 ◽  
Vol 65 (Pt_3) ◽  
pp. 1003-1007 ◽  
Author(s):  
Hao Feng ◽  
Yanhua Zeng ◽  
Yili Huang

A Gram-staining-negative, non-motile, yellow-coloured, rod-shaped bacterium, designated S44T, was isolated from bankside soil of Xixi wetland, located in Zhejiang province, China. Growth of strain S44T was observed at 6–37 °C (optimum, 28 °C) and at pH 6.0–9.0 (optimum, 7.0). No growth occurred in the presence of >2 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain S44T represented a member of the genus Flavobacterium , showing the highest sequence similarities to the sequences from Flavobacterium succinicans DSM 4002T (96.9 %), Flavobacterium reichenbachii WB 3.2-61T (96.6 %) and Flavobacterium glycines NCBI 105008T (96.5 %). The G+C content of the genomic DNA was 33.6 mol%. The predominant cellular fatty acids were C15 : 0, iso-C15 : 0, anteiso-C15 : 0 and summed feature 3 (comprising C16 : 1ω7c and/or iso-C15 : 0 2-OH), and the major respiratory quinone was menaquinone 6 (MK-6). The major polar lipids were phosphatidylethanolamine, two unknown aminolipids, two unknown aminophospholipids and four unknown polar lipids. On the basis of the phenotypic and genotypic data, it is proposed that the isolate S44T be classified as representing a novel species of the genus Flavobacterium , for which the name Flavobacterium palustre sp. nov. is proposed. The type strain is S44T ( = CGMCC 1.12811T = NBRC 110389T).


2015 ◽  
Vol 65 (Pt_1) ◽  
pp. 171-176 ◽  
Author(s):  
Qingqing Feng ◽  
Yuan Gao ◽  
Yuichi Nogi ◽  
Xu Tan ◽  
Lu Han ◽  
...  

Two novel strains, T9T and T10, were isolated from water samples collected from Chishui River flowing through Maotai town, Guizhou, south-west China. The isolates were yellow-pigmented, Gram-reaction-negative, rod-shaped, non-motile and aerobic. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates belonged to the genus Flavobacterium , and showed highest similarities to Flavobacterium hibernum DSM 12611T (97.0 %), followed by Flavobacterium granuli Kw05T (96.7 %) and Flavobacterium pectinovorum DSM 6368T (96.7 %). The novel strains were able to grow at 20–37 °C (optimum 25 °C), pH 7.0–10.0 (optimum pH 7.0–8.0) and with 0–0.5 % (w/v) NaCl (optimum 0.5 %). The predominant fatty acids were iso-C15 : 0, C16 : 1ω7c, anteiso-C15 : 0, C15 : 0, iso-C15 : 0 3-OH and iso-C15 : 1ω10c, and menaquinone-6 (MK-6) was the main respiratory quinone. The major polar lipids were phosphatidylethanolamine, one unknown glycolipid, two unknown aminolipids and two unidentified lipids. The DNA G+C contents of strains T9T and T10 were 37.7 and 36.4 mol%, respectively. According to the phenotypic and genetic data, strains T9T and T10 represent a novel species in the genus Flavobacterium , for which the name Flavobacterium maotaiense sp. nov. is proposed. The type strain is T9T ( = CGMCC 1.12712T = JCM 19927T).


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 442-448 ◽  
Author(s):  
Samson Viulu ◽  
Kohei Nakamura ◽  
Yurina Okada ◽  
Sakiko Saitou ◽  
Kazuhiro Takamizawa

A novel species of Fe(III)-reducing bacterium, designated strain OSK6T, belonging to the genus Geobacter , was isolated from lotus field mud in Japan. Strain OSK6T was isolated using a solid medium containing acetate, Fe(III)-nitrilotriacetate (NTA) and gellan gum. The isolate is a strictly anaerobic, Gram-negative, motile, straight rod-shaped bacterium, 0.6–1.9 µm long and 0.2–0.4 µm wide. The growth of the isolate occurred at 20–40 °C with optima of 30–37 °C and pH 6.5–7.5 in the presence of up to 0.5 g NaCl l−1. The G+C content of the genomic DNA was determined by HPLC to be 59.7 mol%. The major respiratory quinone was MK-8. The major fatty acids were 16 : 1ω7c and 16 : 0. Strain OSK6T was able to grow with Fe(III)-NTA, ferric citrate, amorphous iron (III) hydroxide and nitrate, but not with fumarate, malate or sulfate as electron acceptors. Among examined substrates grown with Fe(III)-NTA, the isolate grew on acetate, lactate, pyruvate and succinate. Analysis of the near full-length 16S rRNA gene sequence revealed that strain OSK6T is closely related to Geobacter daltonii and Geobacter toluenoxydans with 95.6 % similarity to the type strains of these species. On the basis of phylogenetic analysis and physiological tests, strain OSK6T is described as a representative of a novel species, Geobacter luticola sp. nov.; the type strain is OSK6T ( = DSM 24905T = JCM 17780T).


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1639-1645 ◽  
Author(s):  
Lei Zhang ◽  
Xihui Shen ◽  
Yingbao Liu ◽  
Shiqing Li

A Gram-staining-negative, rod-shaped, gliding and pale-pink-pigmented bacterium, designated strain ZLM-10T, was isolated from a soil sample collected from an arid area in Xinjiang province, China, and characterized in a taxonomic study using a polyphasic approach. The novel strain grew optimally at 30–37 °C and in the presence of 2 % (w/v) sea salts. The only respiratory quinone detected was MK-7 and the major cellular fatty acids were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C15 : 0 and iso-C17 : 0 3-OH. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, an unidentified aminolipid and two unidentified aminophospholipids. The DNA G+C content was 45.4 mol%. Flexirubin-type pigments were not produced. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZLM-10T was a member of the phylum Bacteroidetes and appeared most closely related to Cesiribacter roseus 311T (90.2 % sequence similarity), Marivirga sericea LMG 13021T (89.2 %), Cesiribacter andamanensis AMV16T (89.1 %) and Marivirga tractuosa DSM 4126T (89.1 %). On the basis of phenotypic and genotypic data and phylogenetic inference, strain ZLM-10T should be classified as a novel species of a new genus in the family Flammeovirgaceae , for which the name Nafulsella turpanensis gen. nov., sp. nov. is proposed. The type strain of the type species is ZLM-10T ( = CCTCC AB 208222T = KCTC 23983T).


2012 ◽  
Vol 62 (Pt_8) ◽  
pp. 2018-2024 ◽  
Author(s):  
Joong-Jae Kim ◽  
Eiko Kanaya ◽  
Hang-Yeon Weon ◽  
Yuichi Koga ◽  
Kazufumi Takano ◽  
...  

A strictly aerobic, Gram-negative, yellow-pigmented, non-spore-forming rod, designated 15C3T, was isolated from aerobic leaf-and-branch compost at EXPO Park in Osaka, Japan. Growth was observed at 9–33 °C (optimum 25 °C) and pH 5.6–7.9 (optimum pH 6.1–7.0). No growth occurred with >2 % (w/v) NaCl. Strain 15C3T reduced nitrate to nitrogen and showed catalase activity but not oxidase activity. The predominant fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (comprising C16 : 1ω7c and/or iso-C15 : 0 2-OH). The isolate contained phosphatidylethanolamine as the major polar lipid and menaquinone-6 as the major respiratory quinone. The G+C content of the genomic DNA of strain 15C3T was 33.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 15C3T belonged to the genus Flavobacterium and was most closely related to Flavobacterium hercynium WB 4.2-33T (96.9 % sequence similarity). On the basis of phenotypic and phylogenetic distinctiveness, strain 15C3T is considered to represent a novel species in the genus Flavobacterium , for which the name Flavobacterium compostarboris sp. nov. is proposed. The type strain is 15C3T ( = KACC 14224T  = JCM 16527T). Emended descriptions of F. hercynium , Flavobacterium resistens and Flavobacterium johnsoniae are also given.


Author(s):  
Ye Lin Seo ◽  
Jaejoon Jung ◽  
Chi-une Song ◽  
Yong Min Kwon ◽  
Hye Su Jung ◽  
...  

A Gram-stain-negative, orange-pigmented and strictly aerobic bacterium, designated strain MJ115T, was isolated from seawater in Pohang, South Korea. Cells were non-motile rods and showed positive reactions for catalase and oxidase tests. Growth of strain MJ115T was observed at 4–35 °C (optimum, 30 °C), pH 6.0–7.0 (optimum, pH 6.5) and in the presence of 0–8.0 % (w/v) NaCl (optimum, 2.0%). Strain MJ115T contained iso-C15 : 0, anteiso-C15 : 0, anteiso-C17 : 1  ω9c, C17 : 0 2-OH, iso-C16 : 0 3-OH, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1  ω7c and/or C16 : 1  ω6c) as major cellular fatty acids and menaquinone-6 as the major respiratory quinone. Phosphatidylethanolamine, two unidentified aminolipids and four unidentified lipids were detected as major polar lipids. The G+C content of the genomic DNA was 40.7 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain MJ115T formed a phyletic lineage with Nonlabens marinus S1-08T, Nonlabens agnitus JC2678T and Nonlabens antarcticus AKS 622T within the genus Nonlabens . Strain MJ115T was also most closely related to N. marinus S1-08T, N. agnitus JC2678T and N. antarcticus AKS 622T with 96.5, 96.4 and 96.0 % 16S rRNA sequence similarities, respectively. Here it is proposed that strain MJ115T represents a new species of the genus Nonlabens , for which the name Nonlabens ponticola sp. nov. is proposed. The type strain is MJ115T (=KCTC 72237T=NBRC 113963T). In addition, the comparison of the whole genome sequences and phenotypic features suggested that Nonlabens tegetincola and Nonlabens sediminis belong to the same species. Therefore, it is proposed that N. sediminis is reclassified as a later heterotypic synonym of N. tegetincola .


Sign in / Sign up

Export Citation Format

Share Document