scholarly journals Rheinheimera arenilitoris sp. nov., isolated from seashore sand

2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3749-3754 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Sung-Min Won ◽  
Yong-Taek Jung ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-flagellated, aerobic and ovoid or rod-shaped bacterium, designated J-MS1T, was isolated from seashore sand in the South Sea, South Korea, and subjected to a polyphasic taxonomic study. Strain J-MS1T was found to grow optimally at 30 °C and pH 7.0–8.0. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain J-MS1T belonged to the genus Rheinheimera , clustering coherently with the type strain of Rheinheimera chironomi and sharing 98.34 % sequence similarity. Strain J-MS1T exhibited 16S rRNA gene sequence similarity of 94.26–96.98 % to the type strains of the other species of the genus Rheinheimera . In the phylogenetic trees based on gyrB sequences, strain J-MS1T clustered with the type strain of R. chironomi , with which it shared the highest sequence similarity (86.97 %). Strain J-MS1T contained Q-8 as the predominant ubiquinone and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and C18 : 1ω7c as the major fatty acids. The major polar lipids detected in strain J-MS1T and in the type strain of R. chironomi were phosphatidylglycerol and phosphatidylethanolamine. The DNA G+C content of strain J-MS1T was 49.8 mol% and its mean DNA–DNA relatedness value with R. chironomi LMG 23818T was 12 %. Differential phenotypic properties, together with its phylogenetic and genetic distinctiveness, revealed that strain J-MS1T is separated from recognized species of the genus Rheinheimera . On the basis of the data presented, strain J-MS1T is considered to represent a novel species of the genus Rheinheimera , for which the name Rheinheimera arenilitoris sp. nov. is proposed. The type strain is J-MS1T ( = KCTC 42112T = CECT 8623T).

2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3743-3748 ◽  
Author(s):  
Sooyeon Park ◽  
Ja-Min Park ◽  
Yong-Taek Jung ◽  
Chi Nam Seong ◽  
Jung-Hoon Yoon

A Gram-stain-negative, aerobic, non-spore-forming, non-flagellated, gliding and rod-shaped bacterial strain, designated GJMS-9T, was isolated from seashore sand collected at Geoje island in the South Sea, South Korea. Strain GJMS-9T grew optimally at 30 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain GJMS-9T clustered with the type strain of Mesoflavibacter zeaxanthinifaciens , showing the highest sequence similarity of 99.1 %. Strain GJMS-9T exhibited 16S rRNA gene sequence similarity of 96.5 % to the type strain of Mesoflavibacter aestuarii and of less than 96.1 % to the type strains of other recognized species. Strain GJMS-9T contained MK-6 as the only menaquinone and iso-C15 : 1 G, iso-C16 : 0 3-OH, iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. The polar lipid profile of strain GJMS-9T containing phosphatidylethanolamine, one unidentified lipid and one unidentified glycolipid as major components was similar to that of the type strain of M. zeaxanthinifaciens . The DNA G+C content of strain GJMS-9T was 32.2 mol% and its DNA–DNA relatedness with M. zeaxanthinifaciens DSM 18436T was 38±6.1 %. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain GJMS-9T is separated from other species of the genus Mesoflavibacter . On the basis of the data presented, strain GJMS-9T is considered to represent a novel species of the genus Mesoflavibacter , for which the name Mesoflavibacter sabulilitoris sp. nov. is proposed. The type strain is GJMS-9T ( = KCTC 42117T = CECT 8597T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1819-1824 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Chul-Hyung Kang ◽  
Song-Gun Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, aerobic and pleomorphic bacterium, designated BS-W13T, was isolated from a tidal flat on the South Sea, South Korea, and its taxonomic position was investigated using a polyphasic approach. Strain BS-W13T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 1.0–2.0 % (w/v) NaCl. Neighbour-joining and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain BS-W13T clustered with the type strain of Seohaeicola saemankumensis , showing the highest sequence similarity (95.96 %) to this strain. Strain BS-W13T exhibited 16S rRNA gene sequence similarity values of 95.95, 95.91, 95.72 and 95.68 % to the type strains of Sulfitobacter donghicola , Sulfitobacter porphyrae , Sulfitobacter mediterraneus and Roseobacter litoralis , respectively. Strain BS-W13T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The polar lipid profile of strain BS-W13T, containing phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid as major components, was distinguishable from those of some phylogenetically related taxa. The DNA G+C content of strain BS-W13T was 58.1 mol%. The phylogenetic data and differential chemotaxonomic and other phenotypic properties revealed that strain BS-W13T constitutes a novel genus and species within family Rhodobacteraceae of the class Alphaproteobacteria , for which the name Pseudoseohaeicola caenipelagi gen. nov., sp. nov. is proposed. The type strain is BS-W13T ( = KCTC 42349T = CECT 8724T).


2020 ◽  
Vol 70 (10) ◽  
pp. 5287-5295 ◽  
Author(s):  
Yajun Ge ◽  
Yuanmeihui Tao ◽  
Jing Yang ◽  
Xin-He Lai ◽  
Dong Jin ◽  
...  

Four unknown strains belonging to the genus Arthrobacter were isolated from plateau wildlife on the Qinghai–Tibet Plateau of PR China. Phylogenetic analysis based on 16S rRNA gene sequences showed that the four isolates were separated into two clusters. Cluster I (strains 785T and 208) had the greatest 16S rRNA gene sequence similarity to Arthrobacter citreus (98.6 and 98.7 %, respectively), Arthrobacter luteolus (98.0 and 98.1%, respectively), Arthrobacter gandavensis (97.9 and 98.0 %, respectively) and Arthrobacter koreensis (97.6 and 97.7 %, respectively). Likewise, cluster II (strains J391T and J915) had the highest sequence similarity to Arthrobacter ruber (98.6 and 98.3 %, respectively) and Arthrobacter agilis (98.1 and 97.9  %, respectively). Average nucleotide identity and the digital DNA–DNA hybridization values illustrated that the two type strains, 785T and J391T, represented two separate novel species that are distinct from all currently recognized species in the genus Arthrobacter . These strains had DNA G+C contents of 66.0–66.1 mol% (cluster I) and 68.0 mol% (cluster II). The chemotaxonomic properties of strains 785T and J391T were in line with those of the genus Arthrobacter : anteiso-C15:0 (79.3 and 40.8 %, respectively) as the major cellular fatty acid, MK-8(H2) (65.8 %) or MK-9(H2) (75.6 %) as the predominant respiratory quinone, a polar lipid profile comprising diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, glycolipids and phospholipid, and A3α or A4α as the cell wall peptidoglycan type. On the basis of our results, two novel species in the genus Arthrobacter are proposed, namely Arthrobacter yangruifuii sp. nov. (type strain, 785T=CGMCC 1.16725T=GDMCC 1.1592T=JCM 33491T) and Arthrobacter zhaoguopingii sp. nov. (type strain, J391T=CGMCC 1.17382T=GDMCC 1.1667T=JCM 33841T).


Author(s):  
Selma Vieira ◽  
Katharina J. Huber ◽  
Meina Neumann-Schaal ◽  
Alicia Geppert ◽  
Manja Luckner ◽  
...  

Members of the metabolically diverse order Nitrosomonadales inhabit a wide range of environments. Two strains affiliated with this order were isolated from soils in Germany and characterized by a polyphasic approach. Cells of strains 0125_3T and Swamp67T are Gram-negative rods, non-motile, non-spore-forming, non-capsulated and divide by binary fission. They tested catalase-negative, but positive for cytochrome c-oxidase. Both strains form small white colonies on agar plates and grow aerobically and chemoorganotrophically on SSE/HD 1 : 10 medium, preferably utilizing organic acids and proteinaceous substrates. Strains 0125_3T and Swamp67T are mesophilic and grow optimally without NaCl addition at slightly alkaline conditions. Major fatty acids are C16 : 1  ω7c, C16 : 0 and C14 : 0. The major polar lipids are diphosphatidylglycerol, phosphatidylethanolamine and phosphatidyglycerol. The predominant respiratory quinone is Q-8. The G+C content for 0125_3T and Swamp67T was 67 and 66.1 %, respectively. The 16S rRNA gene analysis indicated that the closest relatives (<91 % sequence similarity) of strain 0125_3T were Nitrosospira multiformis ATCC 25196T, Methyloversatilis universalis FAM5T and Denitratisoma oestradiolicum AcBE2-1T, while Nitrosospira multiformis ATCC 25196T, Nitrosospira tenuis Nv1T and Nitrosospira lacus APG3T were closest to strain Swamp67T. The two novel strains shared 97.4 % 16S rRNA gene sequence similarity with one another and show low average nucleotide identity of their genomes (83.8 %). Based on the phenotypic, chemotaxonomic, genomic and phylogenetic analysis, we propose the two novel species Usitatibacter rugosus sp. nov (type strain 0125_3T=DSM 104443T=LMG 29998T=CECT 9241T) and Usitatibacter palustris sp. nov. (type strain Swamp67T=DSM 104440T=LMG 29997T=CECT 9242T) of the novel genus Usitatibacter gen. nov., within the novel family Usitatibacteraceae fam. nov.


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1001-1006 ◽  
Author(s):  
Soo-Young Lee ◽  
Sooyeon Park ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, non-spore-forming, rod-shaped bacterial strain, BB-Mw22T, was isolated from a tidal flat sediment of the South Sea in South Korea. It grew optimally at 30–37 °C, at pH 7.0–7.5 and in the presence of 2–3 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain BB-Mw22T belonged to the genus Kangiella and the cluster comprising Kangiella species and strain BB-Mw22T was clearly separated from other taxa. Strain BB-Mw22T exhibited 95.3–98.7 % 16S rRNA gene sequence similarity to the type strains of recognized Kangiella species. Strain BB-Mw22T contained Q-8 as the predominant ubiquionone and iso-C15 : 0 and iso-C11 : 0 3-OH as the major fatty acids. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine and one unidentified aminolipid. The DNA G+C content of strain BB-Mw22T was 48.9 mol%, and its mean DNA–DNA hybridization values with Kangiella geojedonensis YCS-5T, Kangiella japonica JCM 16211T and Kangiella taiwanensis JCM 17727T were 14–28 %. Phylogenetic and genetic distinctiveness and differential phenotypic properties revealed that strain BB-Mw22T is distinguishable from all recognized Kangiella species. On the basis of the data presented, strain BB-Mw22T is considered to represent a novel species of the genus Kangiella , for which the name Kangiella sediminilitoris sp. nov. is proposed. The type strain is BB-Mw22T ( = KCTC 23892T  = CCUG 62217T).


2013 ◽  
Vol 63 (Pt_8) ◽  
pp. 2865-2871 ◽  
Author(s):  
Chul-Hyung Kang ◽  
Yong-Taek Jung ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-spore-forming, strictly aerobic, non-flagellated, non-gliding, rod-shaped bacterial strain, designated SMS-12T, was isolated from marine sand in a firth on the western coast of South Korea. Strain SMS-12T grew optimally at 25 °C, at pH 7.0–7.5 and in the absence of NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain SMS-12T fell within the clade comprising species of the genus Mucilaginibacter , forming a coherent cluster with the type strain of Mucilaginibacter lappiensis , with which it exhibited the highest 16S rRNA gene sequence similarity value of 97.5 %. Levels of sequence similarity to the type strains of the other species of the genus Mucilaginibacter and the other species used in the phylogenetic analysis were 93.3–96.4 % and <91.5 %, respectively. Strain SMS-12T contained MK-7 as the predominant menaquinone, and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH), iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. The major polar lipids were phosphatidylethanolamine and one unidentified aminophospholipid; sphingolipids were present. The DNA G+C content was 41.8 mol% and the mean DNA–DNA relatedness with M. lappiensis KACC 14978T was 13 %. Differential phenotypic properties, together with phylogenetic and genetic distinctiveness, revealed that strain SMS-12T is separate from other species of the genus Mucilaginibacter . On the basis of the data presented, strain SMS-12T is considered to represent a novel species of the genus Mucilaginibacter , for which the name Mucilaginibacter sabulilitoris sp. nov. is proposed. The type strain is SMS-12T ( = KCTC 32111T = CCUG 62214T).


2013 ◽  
Vol 63 (Pt_6) ◽  
pp. 2234-2238 ◽  
Author(s):  
Ahyoung Choi ◽  
Jang-Cheon Cho

Gram-negative strains, motile by a single polar flagellum, non-pigmented and with a curved rod-shaped morphology, designated IMCC1826T and IMCC1883, were isolated from a surface seawater sample from the Yellow Sea. The two strains shared 99.9 % 16S rRNA gene sequence similarity and showed 92 % DNA–DNA relatedness, suggesting that they belonged to the same genomic species. Phylogenetic analysis based on 16S rRNA gene sequences showed that the two isolates were related most closely to the type strain of Thalassolituus oleivorans with a sequence similarity of 96.4 % and formed a robust phyletic lineage with T. oleivorans . DNA–DNA relatedness between the two strains and T. oleivorans DSM 14913T was 8.7–11.6 %. A putative alkane hydroxylase (alkB) gene was detected in strain IMCC1826T by PCR, but the amino acid sequence of the gene was distantly related to that of the AlkB homologue of T. oleivorans DSM 14913T. As expected from the presence of the alkB gene, the new strains utilized n-tetradecane and n-hexadecane as a carbon source. The DNA G+C content was 54.6–56.0 mol% and the main isoprenoid quinone detected was Q-9. Polar lipids of strain IMCC1826T included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and amino-group-containing lipids. On the basis of taxonomic data obtained in this study, strains IMCC1826T and IMCC1883 represent a novel species of the genus Thalassolituus , for which the name Thalassolituus marinus sp. nov. is proposed, with IMCC1826T ( = KCTC 23084T = NBRC 107590T) as the type strain.


2012 ◽  
Vol 62 (Pt_6) ◽  
pp. 1359-1364 ◽  
Author(s):  
Soo-Young Lee ◽  
Sooyeon Park ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, ovoid or rod-shaped bacterial strain, designated L-6T, was isolated from seawater of Baekdo harbour of the East Sea in Korea and its taxonomic position was investigated by using a polyphasic study. Strain L-6T grew optimally at 30 °C, at pH 7.5–8.0 and in the presence of 2 % (w/v) NaCl. In the neighbour-joining phylogenetic tree based on 16S rRNA gene sequences, strain L-6T formed a cluster with the type strain of Celeribacter neptunius at a bootstrap resampling value of 100 %. Strain L-6T exhibited 16S rRNA gene sequence similarity values of 97.7 % to C. neptunius H 14T and of less than 96.2 % to the type strains of other species used in the phylogenetic analysis. The G+C content of the chromosomal DNA of strain L-6T was 60.9 mol%. The predominant ubiquinone found in strain L-6T and C. neptunius CIP 109922T was ubiquinone-10 (Q-10). The predominant fatty acid of strain L-6T and C. neptunius CIP 109922T was C18 : 1ω7c. The major polar lipids of strain L-6T were phosphatidylglycerol, one unidentified aminolipid and one unidentified lipid. The mean level of DNA–DNA relatedness between strain L-6T and C. neptunius CIP 109922T was 17 %. Differential phenotypic properties, together with phylogenetic and genetic distinctiveness, demonstrated that strain L-6T is distinguishable from C. neptunius . On the basis of the data presented, strain L-6T is considered to represent a novel species of the genus Celeribacter , for which the name Celeribacter baekdonensis sp. nov. is proposed. The type strain is L-6T ( = KCTC 23497T  = CCUG 60799T).


2014 ◽  
Vol 64 (Pt_6) ◽  
pp. 1841-1846 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Chul-Hyung Kang ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, aerobic, curved-to-spiral-rod-shaped bacterium, designated AH-MY2T, was isolated from a tidal flat on Aphae island in the sea to the south-west of South Korea, and its taxonomic position was investigated using a polyphasic taxonomic approach. Strain AH-MY2T grew optimally at 30 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain AH-MY2T clustered with the type strain of Terasakiella pusilla and that this cluster joined the clade comprising the type strains of species of the genus Thalassospira . Strain AH-MY2T exhibited 16S rRNA gene sequence similarity values of 90.6 % to the type strain of Terasakiella pusilla and of less than 91.0 % to the type strains of other species with validly published names. Strain AH-MY2T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The major polar lipids detected in strain AH-MY2T were phosphatidylglycerol, phosphatidylethanolamine, two unidentified aminolipids and one unidentified glycolipid. The DNA G+C content of strain AH-MY2T was 56.0 mol%. The phylogenetic data and differential chemotaxonomic and other phenotypic properties revealed that strain AH-MY2T represented a novel genus and species within the family Rhodospirillaceae of the class Alphaproteobacteria , for which the name Aestuariispira insulae gen. nov., sp. nov. is proposed. The type strain of Aestuariispira insulae is AH-MY2T ( = KCTC 32577T = CECT 8488T).


2020 ◽  
Vol 70 (5) ◽  
pp. 3323-3327 ◽  
Author(s):  
Qian Wang ◽  
Sheng-Dong Cai ◽  
Jie Liu ◽  
De-Chao Zhang

The Gram-strain-negative, rod-shaped, facultatively anaerobic, non-motile bacterial strain, designated S1-10T, was isolated from marine sediment. Strain S1-10T grew at 4–42 °C (optimally at 30–35 °C), at pH 7.0–10 (optimally at pH 9) and in the presence of 0.5–8 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain S1-10T was related to the genus Aequorivita and had highest 16S rRNA gene sequence similarity to Aequorivita viscosa 8-1bT (97.7%). The predominant cellular fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The main respiratory quinone was menaquinone 6 (MK-6). The genomic DNA G+C content of strain S1-10T was 34.6 mol%. The polar lipid profile of strain S1-10T contained phosphatidylethanolamine, two aminolipids, two glycolipids, one phosphoglycolipid and three unidentified polar lipids. In addition, the maximum values of in silico DNA–DNA hybridization (isDDH) and average nucleotide identity (ANI) between strain S1-10T and A. viscosa CGMCC 1.11023T were 15.4 and 75.7 %, respectively. Combined data from phenotypic, phylogenetic, isDDH and ANI analyses demonstrated that strain S1-10T is the representative of a novel species of the genus Aequorivita , for which we propose the name Aequorivita sinensis sp. nov. (type strain S1-10T=CGMCC 1.12579T=JCM 19789T). We also propose that Vitellibacter todarodis and Vitellibacter aquimaris should be transferred into genus Aequorivita and be named Aequorivita todarodis comb. nov. and Aequorivita aquimaris comb. nov., respectively. The type strain of Aequorivita todarodis comb. nov. is MYP2-2T (= KCTC 62141T= NBRC 113025T) and the type strain of Aequorivita aquimaris comb. nov. is D-24T (=KCTC 42708T=DSM 101732T).


Sign in / Sign up

Export Citation Format

Share Document