scholarly journals Nocardia shimofusensis sp. nov., isolated from soil, and Nocardia higoensis sp. nov., isolated from a patient with lung nocardiosis in Japan

2004 ◽  
Vol 54 (6) ◽  
pp. 1927-1931 ◽  
Author(s):  
Akiko Kageyama ◽  
Katsukiyo Yazawa ◽  
Akira Mukai ◽  
Mari Kinoshita ◽  
Nobukatsu Takata ◽  
...  

Three actinomycete strains isolated from soils and one strain isolated from a patient with lung nocardiosis in 1999 and 2001 in Japan have been provisionally assigned to the genus Nocardia on the basis of morphological criteria. These isolates were further investigated to determine their specific taxonomic status. Detailed chemotaxonomic characterization and 16S rRNA gene sequence analysis of these isolates confirmed that they belong to the genus Nocardia. The 16S rRNA gene sequences of the four strains were most similar to that of Nocardia farcinica. However, the sequence similarity values between these four strains and N. farcinica were <98·9 %. These four strains were susceptible to 5-fluorouracil, and they have the ability to decompose urea, which is a very characteristic trait. Furthermore, DNA–DNA relatedness data revealed that IFM 10311T, IFM 10312 and IFM 10313 comprise a single novel species of Nocardia, that IFM 10084T represents another novel species of Nocardia and that these two novel species could be distinguished from N. farcinica. The names Nocardia shimofusensis sp. nov. and Nocardia higoensis sp. nov. are proposed, with IFM 10311T (=NBRC 100134T=JCM 12122T=DSM 44733T) and IFM 10084T (=NBRC 100133T=JCM 12121T=DSM 44732T) as the respective type strains.

Author(s):  
Yong-Taek Jung ◽  
Soo-Young Lee ◽  
Won-Chan Choi ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-negative, non-sporulating, non-flagellated rod, designated BR-9T, was isolated from soil collected on the Korean peninsula. Strain BR-9T grew optimally at pH 6.0–7.0, at 30 °C and in the absence of NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain BR-9T belonged to the genus Pedobacter and clustered with Pedobacter insulae DS-139T and Pedobacter koreensis WPCB189T. Strain BR-9T exhibited 98.2 and 97.5 % 16S rRNA gene sequence similarity with P. insulae DS-139T and P. koreensis WPCB189T, respectively, and <96.7 % sequence similarity with the type strains of other species in the genus Pedobacter. Strain BR-9T contained MK-7 as the predominant menaquinone and iso-C15 : 0 and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) as the major fatty acids. The DNA G+C content of strain BR-9T was 38.5 mol%. DNA–DNA relatedness between strain BR-9T and P. insulae DS-139T and P. koreensis KCTC 12536T was 3.4–4.2 %, which indicated that the isolate was genetically distinct from these type strains. Strain BR-9T was also distinguishable by differences in phenotypic properties. On the basis of the data presented, strain BR-9T is considered to represent a novel species of the genus Pedobacter, for which the name Pedobacter boryungensis sp. nov. is proposed. The type strain is BR-9T ( = KCTC 23344T  = CCUG 60024T).


2007 ◽  
Vol 57 (5) ◽  
pp. 947-950 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Jung-Sook Lee ◽  
Tae-Kwang Oh

A Gram-negative, rod-shaped, Flavobacterium-like bacterial strain, DS-20T, was isolated from soil from the island of Dokdo, Korea, and subjected to a polyphasic taxonomic study. Strain DS-20T grew optimally at pH 6.5–7.0 and 25 °C. It contained MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C17 : 0 3-OH and iso-C17 : 1 ω9c as the major fatty acids. The DNA G+C content was 38.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain DS-20T belonged to the genus Flavobacterium. Levels of 16S rRNA gene sequence similarity between strain DS-20T and the type strains of recognized Flavobacterium species were below 94.9 %. Strain DS-20T differed from phylogenetically related Flavobacterium species in several phenotypic characteristics. On the basis of its phenotypic and phylogenetic distinctiveness, strain DS-20T was classified in the genus Flavobacterium as representing a novel species, for which the name Flavobacterium terrigena sp. nov. is proposed. The type strain is DS-20T (=KCTC 12761T=DSM 17934T).


2007 ◽  
Vol 57 (6) ◽  
pp. 1355-1359 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-negative, rod-shaped bacterial strain, K105T, was isolated from wastewater of a textile dye works in Korea and subjected to a polyphasic taxonomic study. Strain K105T grew optimally at pH 6.5–7.5 and 30–37 °C. It contained MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C17 : 1 ω9c, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH) as the major fatty acids. The DNA G+C content was 36.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain K105T belonged to the genus Chryseobacterium. Strain K105T exhibited 16S rRNA gene sequence similarity values of less than 96.9 % to the type strains of recognized Chryseobacterium species. Strain K105T differed from phylogenetically related Chryseobacterium species in several phenotypic properties. On the basis of phenotypic and phylogenetic data, strain K105T (=KCTC 12841T=JCM 14362T) is placed in the genus Chryseobacterium as the type strain of a novel species, for which the name Chryseobacterium daeguense sp. nov. is proposed.


2011 ◽  
Vol 61 (2) ◽  
pp. 433-437 ◽  
Author(s):  
Ming Liu ◽  
Yufeng Liu ◽  
Yaqiong Wang ◽  
Xuesong Luo ◽  
Junqiang Dai ◽  
...  

A yellow-pigmented bacterial strain, designated RCML-52T, was isolated from an abandoned gold mine in the desert in Xinjiang, China. Strain RCML-52T was Gram-negative, aerobic and non-motile. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain RCML-52T was affiliated with the genus Lysobacter. Strain RCML-52T exhibited <95.6 % 16S rRNA gene sequence similarity to the type strains of all species of the genus Lysobacter. The major fatty acids were iso-C16 : 0 (27.6 %), iso-C15 : 0 (19.1 %), iso-C17 : 1 ω9c (16.4 %), iso-C11 : 0 3-OH (6.5 %) and iso-C11 : 0 (5.3 %). The DNA G+C content was 69.7 mol%. The major isoprenoid quinone was Q-8. On the basis of phylogenetic, phenotypic and chemotaxonomic analysis, strain RCML-52T should be assigned to a novel species of the genus Lysobacter, for which the name Lysobacter xinjiangensis sp. nov. is proposed. The type strain is RCML-52T (=CCTCC AB 208194T =KCTC 22558T).


2011 ◽  
Vol 61 (10) ◽  
pp. 2338-2341 ◽  
Author(s):  
Yan-Jiao Zhang ◽  
Xi-Ying Zhang ◽  
Zi-Hao Mi ◽  
Chun-Xiao Chen ◽  
Zhao-Ming Gao ◽  
...  

A Gram-negative, motile, psychrotolerant, oxidase- and catalase-positive bacterium, designated BSs20135T, was isolated from Arctic marine sediment. Cells were straight or slightly curved rods and formed circular, convex and yellowish-brown colonies. Buds and prosthecae could be produced. The strain grew at 4–28 °C (optimum 25 °C) and with 1–5 % (w/v) NaCl (optimum 2 %) and hydrolysed aesculin and DNA, but did not reduce nitrate to nitrite. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain BSs20135T belonged to the genus Glaciecola and shared 93.6–97.7 % sequence similarity with the type strains of known species of the genus Glaciecola. The major cellular fatty acids of strain BSs20135T were summed feature 3 (comprising C16 : 1ω7c and/or iso-C15 : 0 2-OH), C16 : 0, C17 : 1ω8c and C18 : 1ω7c. The genomic DNA G+C content was 40.3 mol%. Based on 16S rRNA gene sequence analysis, DNA–DNA hybridization data and phenotypic and chemotaxonomic characterization, strain BSs20135T represents a novel species, for which the name Glaciecola arctica sp. nov. is proposed. The type strain is BSs20135T ( = CCTCC AB 209161T  = KACC 14537T).


2007 ◽  
Vol 57 (10) ◽  
pp. 2236-2240 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Jung-Sook Lee ◽  
Hyun Woo Oh ◽  
Tae-Kwang Oh

A Gram-negative, rod-shaped, Brevundimonas-like bacterial strain, DS-18T, was isolated from soil in Dokdo, Korea, and its exact taxonomic position was investigated by using a polyphasic approach. Strain DS-18T grew optimally at pH 6.5–7.0 and 25 °C without NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain DS-18T belonged to the genus Brevundimonas. Strain DS-18T contained Q-10 as the predominant ubiquinone and C18 : 1 ω7c and C16 : 0 as the major fatty acids. The DNA G+C content was 68.7 mol%. Strain DS-18T exhibited levels of 16S rRNA gene sequence similarity of 96.3–98.7 % to the type strains of Brevundimonas species and Mycoplana bullata. Mean DNA–DNA relatedness values between strain DS-18T and the type strains of phylogenetically related Brevundimonas species and M. bullata were in the range 15–32 %. Strain DS-18T differed from Brevundimonas species and M. bullata in several phenotypic characteristics. On the basis of phenotypic, phylogenetic and genetic data, strain DS-18T represents a novel species of the genus Brevundimonas, for which the name Brevundimonas lenta sp. nov. is proposed. The type strain is DS-18T (=KCTC 12871T =JCM 14602T).


2004 ◽  
Vol 54 (6) ◽  
pp. 1991-1995 ◽  
Author(s):  
Nomeda Kuisiene ◽  
Juozas Raugalas ◽  
Donaldas Chitavichius

Obligately thermophilic, aerobic, proteolytic, endospore-forming strain N-3T was isolated from a high-temperature oilfield in Lithuania. 16S rRNA gene sequence analysis placed this strain in genetic group 5 of the endospore formers. Geobacillus thermoleovorans appeared to be the closest phylogenetic neighbour (99·4 % sequence similarity). The G+C content of strain N-3T was 52·5 mol% and matched the range established for the genus Geobacillus. Studies of DNA–DNA relatedness and morphological and physiological analyses enabled strain N-3T to be described as a member of the genus Geobacillus, but could not assign this strain to any other known species of this genus. Results of this polyphasic study allowed characterization of strain N-3T as a novel species in the genus Geobacillus – Geobacillus lituanicus sp. nov. This species can be distinguished from G. thermoleovorans and Geobacillus stearothermophilus on the basis of 16S rRNA gene PCR-RFLP assays with the restriction endonucleases AluI, HaeIII and TaqI. The type strain of the novel species is N-3T (=DSM 15325T=VKM B-2294T).


2011 ◽  
Vol 61 (11) ◽  
pp. 2577-2581 ◽  
Author(s):  
Long Jin ◽  
Kwang Kyu Kim ◽  
Sang-Hoon Baek ◽  
Sung-Taik Lee

Two strains, designated B1-1T and B6-8T, were isolated from the Geumho River and the Dalseo Stream in Korea. Comparative 16S rRNA gene sequence analysis showed a clear affiliation of these two bacteria with the class Alphaproteobacteria, their closest relatives being Kaistia adipata KCTC 12095T, Kaistia granuli KCTC 12575T, Kaistia soli KACC 12605T and Kaistia terrae KACC 12910T with 16S rRNA gene sequence similarities of 95.3 –97.7 % to the two novel strains. Strains B1-1T and B6-8T shared a 16S rRNA gene sequence similarity value of 96.1 %. Cells of the two strains were Gram-reaction-negative, aerobic, non-motile, short rods or cocci. The predominant ubiquinone was Q-10. The major fatty acids were C16 : 0, C18 : 1ω7c, C18 : 0 and C19 : 0ω8c cyclo for strain B1-1T and C16 : 0, C18 : 1ω7c, C18 : 0, C18 : 1 2-OH, and C19 : 0ω8c cyclo for strain B6-8T. The G+C contents of the genomic DNA of the strains B1-1T and B6-8T were 61.6 and 66.5 mol%, respectively. Based on the results of this polyphasic study, strains B1-1T ( = KCTC 12849T  = DSM 18799T) and B6-8T ( = KCTC 12850T  = DSM 18800T) represent two novel species of the genus Kaistia, for which the names Kaistia geumhonensis sp. nov. and Kaistia dalseonensis sp. nov. are proposed, respectively.


2010 ◽  
Vol 60 (12) ◽  
pp. 2984-2990 ◽  
Author(s):  
Mitsuo Sakamoto ◽  
Natsuko Suzuki ◽  
Yoshimi Benno

hsp60 gene sequences were determined for members of the genus Bacteroides and sequence similarities were compared with those obtained for the 16S rRNA gene. Among the 29 Bacteroides type strains, the mean sequence similarity of the hsp60 gene (84.5 %) was significantly less than that of the 16S rRNA gene (90.7 %), indicating a high discriminatory power of the hsp60 gene. Species of the genus Bacteroides were differentiated well by hsp60 gene sequence analysis, except for Bacteroides pyogenes JCM 6294T, Bacteroides suis JCM 6292T and Bacteroides tectus JCM 10003T. The hsp60 gene sequence analysis and the levels of DNA–DNA relatedness observed demonstrated that these three type strains are a single species. Consequently, B. suis and B. tectus are heterotypic synonyms of B. pyogenes. This study suggests that the hsp60 gene is an alternative phylogenetic marker for the classification of species of the genus Bacteroides.


2011 ◽  
Vol 61 (11) ◽  
pp. 2763-2768 ◽  
Author(s):  
Keun Sik Baik ◽  
Han Na Choe ◽  
Seong Chan Park ◽  
Eun Mi Kim ◽  
Chi Nam Seong

A rod-shaped, endospore-forming, Gram-reaction-positive bacterium, designated strain WPCB018T, was isolated from a fresh water sample collected from Woopo wetland, Korea. The isolate was identified as a member of the genus Paenibacillus on the basis of phenotypic characteristics and phylogenetic inference based on 16S rRNA gene sequence analysis. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and unknown aminophospholipids. The diamino acid found in the cell-wall peptidoglycan was meso-diaminopimelic acid. The predominant menaquinone was MK-7. The major cellular fatty acids were anteiso-C15 : 0 (32.2 %), C16 : 0 (20.1 %) and C18 : 0 (18.1 %). The DNA G+C content was 56.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain WPCB018T belongs to a cluster comprising species of the genus Paenibacillus, its closest neighbours being Paenibacillus humicus PC-147T (97.5 %) and Paenibcillus pasadenensis SAFN-007T (96.2 %). Genomic DNA–DNA hybridizations performed with strain WPCB018T and type strains of the species P. humicus, P. pinihumi, P. phyllosphaerae, P. pasadenensis and P. tarimensis showed relatedness values of only 10, 17, 18, 19 and 20 %, respectively. On the basis of phenotypic, molecular and genetic evidence, strain WPCB018T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus wooponensis sp. nov. is proposed. The type strain of the novel species is WPCB018T ( = KCTC 13280T  = JCM 16350T).


Sign in / Sign up

Export Citation Format

Share Document