scholarly journals Arcanobacterium bialowiezense sp. nov. and Arcanobacterium bonasi sp. nov., isolated from the prepuce of European bison bulls (Bison bonasus) suffering from balanoposthitis, and emended description of the genus Arcanobacterium Collins et al. 1983

2006 ◽  
Vol 56 (4) ◽  
pp. 861-866 ◽  
Author(s):  
Alexandra Lehnen ◽  
Hans-Jürgen Busse ◽  
Kai Frölich ◽  
Malgorzata Krasinska ◽  
Peter Kämpfer ◽  
...  

A taxonomic study was performed on 13 bacterial strains isolated from preputial swabs of European bison (Bison bonasus) bulls suffering from balanoposthitis. The isolates were Gram-positive, non-motile, facultatively anaerobic, diphtheroid-shaped cells. Based on biochemical profiles and BOX-PCR-generated genomic fingerprints, the isolates were grouped into two clusters represented by four and nine strains, respectively. Strains 1(W3/01)T and 2(W106/04)T, selected as representatives of the two clusters, shared 97·2 % 16S rRNA gene sequence similarity. The highest gene sequence similarities found (95·5–96·4 %) were to Arcanobacterium pyogenes DSM 20630T and Arcanobacterium bernardiae DSM 9152T, demonstrating that the novel strains are members of the genus Arcanobacterium, but are not members of a recognized species. The polar lipid profiles of the two novel strains displayed the major characteristics also found in A. pyogenes DSM 20630T and Arcanobacterium haemolyticum DSM 20595T. Detection of a quinone system with MK-10(H4) as the predominant compound confirmed phylogenetic relatedness of the novel strains to A. pyogenes and separated them from the type species of the genus, A. haemolyticum, which contains MK-9(H4) as the predominant quinone. Results from DNA–DNA hybridizations clearly demonstrated that strains 1(W3/01)T and 2(W106/04)T represent separate species. Based on these data, two novel species of the genus Arcanobacterium are described, for which the names Arcanobacterium bialowiezense sp. nov. [type strain 1(W3/01)T=DSM 17162T=NCTC 13354T] and Arcanobacterium bonasi sp. nov. [type strain 2(W106/04)T=DSM 17163T=NCTC 13355T] are proposed.

2006 ◽  
Vol 56 (9) ◽  
pp. 2095-2100 ◽  
Author(s):  
Mai Takahashi ◽  
Ken-ichiro Suzuki ◽  
Yasuyoshi Nakagawa

The taxonomic positions of five bacterial strains isolated from the Yaeyama Islands of Japan and ‘Microscilla arenaria’ NBRC 15982 were determined using a polyphasic taxonomic approach. 16S rRNA gene sequence analyses placed all of the strains close to the genus Flammeovirga. DNA–DNA hybridization studies, biochemical and physiological characterizations and chemotaxonomic analyses suggested that ‘M. arenaria’ NBRC 15982 and the five novel isolates represented two separate species of the genus Flammeovirga. Emendation of the genus Flammeovirga Nakagawa et al. 1997 and the species Flammeovirga aprica (Reichenbach 1989) Nakagawa et al. 1997 is proposed. In addition, ‘Microscilla arenaria’ Lewin 1969 is proposed as Flammeovirga arenaria nom. rev., comb. nov. (with the type strain NBRC 15982T=CIP 109101T) and the novel isolates are proposed as Flammeovirga yaeyamensis sp. nov. (type strain IR25-3T=NBRC 100898T=CIP 109099T).


2007 ◽  
Vol 57 (3) ◽  
pp. 548-551 ◽  
Author(s):  
Hang-Yeon Weon ◽  
Byung-Yong Kim ◽  
Min-Kyeong Kim ◽  
Seung-Hee Yoo ◽  
Soon-Wo Kwon ◽  
...  

Two bacterial strains, designated GH34-4T and GH41-7T, were isolated from greenhouse soil cultivated with cucumber. The bacteria were strictly aerobic, Gram-negative, rod-shaped and oxidase- and catalase-positive. 16S rRNA gene sequence analysis indicated that these strains belong to the genus Lysobacter within the Gammaproteobacteria. Strain GH34-4T showed highest sequence similarity to Lysobacter yangpyeongensis GH19-3T (97.5 %) and Lysobacter koreensis Dae16T (96.4 %), and strain GH41-7T showed highest sequence similarity to Lysobacter antibioticus DSM 2044T (97.5 %), Lysobacter enzymogenes DSM 2043T (97.5 %) and Lysobacter gummosus ATCC 29489T (97.4 %). Levels of DNA–DNA relatedness indicated that strains GH34-4T and GH41-7T represented species clearly different from L. yangpyeongensis, L. antibioticus, L. enzymogenes and L. gummosus. The major cellular fatty acids of strains GH34-4T and GH41-7T were iso-C16 : 0, iso-C15 : 0 and iso-C17 : 1 ω9c, and the major isoprenoid quinone was Q-8. The DNA G+C contents of GH34-4T and GH41-7T were 62.5 and 66.6 mol%, respectively. On the basis of the polyphasic taxonomic data presented, it is evident that each of these strains represents a novel species of the genus Lysobacter, for which the names Lysobacter niabensis sp. nov. (type strain GH34-4T=KACC 11587T=DSM 18244T) and Lysobacter niastensis sp. nov. (type strain GH41-7T=KACC 11588T=DSM 18481T) are proposed.


2007 ◽  
Vol 57 (8) ◽  
pp. 1834-1839 ◽  
Author(s):  
Min-Ho Yoon ◽  
Wan-Taek Im

Two strains (Gsoil 492T and Gsoil 643T) isolated in Pocheon Province, South Korea, from soil used for ginseng cultivation were characterized using a polyphasic approach. Both isolates comprised Gram-negative, aerobic, non-motile, rod-shaped bacteria. They had similar chemotaxonomic characteristics, e.g. containing MK-7 as the major quinone, having a DNA G+C content in the range 42.5–43.3 mol% and possessing iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. A phylogenetic analysis based on 16S rRNA gene sequences indicated that the two isolates formed a tight cluster with several uncultured bacterial clones and with the established genera Terrimonas, Niastella and Chitinophaga in the phylum Bacteroidetes but were clearly separate from these genera. The levels of 16S rRNA gene sequence similarity between the isolates and type strains of related genera ranged from 87.5 to 92.4 %. Furthermore, the results of physiological and biochemical tests allowed phenotypic differentiation of the isolates from phylogenetically closely related species with validly published names. The level of 16S rRNA gene sequence similarity between the two strains was 99.5 %, whereas the DNA–DNA relatedness value was 44 %, indicating that they represent separate species. On the basis of the polyphasic evidence, a novel genus, Flavisolibacter gen. nov., and two novel species, Flavisolibacter ginsengiterrae sp. nov. (type strain Gsoil 492T=KCTC 12656T=DSM 18136T) and Flavisolibacter ginsengisoli sp. nov. (type strain Gsoil 643T=KCTC 12657T=DSM 18119T), are proposed. Flavisolibacter ginsengiterrae is the type species of the genus.


Author(s):  
Yuchao Ma ◽  
Zhiqiang Xia ◽  
Xuming Liu ◽  
Sanfeng Chen

Five novel endospore-forming, nitrogen-fixing bacterial strains were isolated from the rhizosphere soils of plants of the species Sabina squamata, Weigela florida and Zanthoxylum simulans. A phylogenetic analysis based on 16S rRNA gene sequences revealed that the five strains formed a distinct cluster within the genus Paenibacillus. These novel strains showed the highest levels (96.2–98.2 %) of 16S rRNA gene sequence similarity with Paenibacillus azotofixans. However, the DNA–DNA relatedness between these novel strains and P. azotofixans was 12.9–29.5 %. The DNA G+C contents of the five strains were found to be 51.9–52.9 mol%. Phenotypic analyses showed that a significant feature of the novel strains (differentiating them from P. azotofixans and other Paenibacillus species) is that all of them were unable to produce acid and gas from various carbohydrates such as glucose, sucrose, lactose and fructose. Anteiso-branched C15 : 0 was the major fatty acid present in the novel type strain. On the basis of these data, the five novel strains represent a novel species of the genus Paenibacillus, for which the name Paenibacillus sabinae sp. nov. is proposed. The type strain is T27T (=CCBAU 10202T=DSM 17841T).


2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 93-97 ◽  
Author(s):  
Olga I. Nedashkovskaya ◽  
Sung-Heun Cho ◽  
Yochan Joung ◽  
Kiseong Joh ◽  
Mi Na Kim ◽  
...  

An aerobic, halotolerant, Gram-negative bacterium was isolated from the sea urchin Strongylocentrotus intermedius and subjected to taxonomic characterization. The strain, designated KMM 6042T, was rod-shaped, motile and yellow-pigmented. Phylogenetic analysis indicated that the strain was most closely related to the type strain of Altererythrobacter dongtanensis , and the level of 16S rRNA gene sequence similarity between the two was 99.0 %. However, the DNA–DNA relatedness between the two strains was 34.4±7.6 %. Physiological and chemotaxonomic properties clearly distinguished the novel strain from other species of the genus Altererythrobacter . It is thus evident from the phylogenetic and phenotypic analyses that strain KMM 6042T merits recognition as a novel species of the genus Altererythrobacter , for which the name Altererythrobacter troitsensis sp. nov. (type strain, KMM 6042T = KCTC 12303T = JCM 17037T) is proposed.


2011 ◽  
Vol 61 (7) ◽  
pp. 1699-1704 ◽  
Author(s):  
H. Christensen ◽  
A. M. Bojesen ◽  
M. Bisgaard

Strains T138021-75T, Pg19 and Pg20 (taxon 25 of Bisgaard) were isolated from guinea pigs and characterized. Strains T138021-75T and Pg20 showed identical 16S rRNA gene sequences and were distantly related to the published strain P224 with the highest 16S rRNA similarity of 98.6 %. These two strains showed 97.8 % sequence similarity with the type strain and other strains of Mannheimia glucosida and 97.3 % similarity with the type strain of Mannheimia varigena, but <97 % similarity with all other type strains of the genus Mannheimia, including Mannheimia haemolytica (96.9 %). Phylogenetic analysis of rpoB gene sequences showed that strain P224 had a distant position (89.9 % gene sequence similarity) compared with the three other strains (T138021-75T, Pg20 and Pg19), which had identical gene sequences. These three novel strains also shared identical recN gene sequences. Phylogenetic analysis of the recN gene sequences showed a close relationship between the three novel strains and strain P224. The DNA–DNA reassociation value between strain T138021-75T and P224 was 81.6 % and 40.3 % between strain T138021-75T and the type strain of M. glucosida. Based on the DNA–DNA reassociation data, strain T138021-75T belonged to a separate species that was closely related to strain P224. Strain P224 differed from strains T138021-75T, Pg20 and Pg19 in the following phenotypic characteristics: activity of ornithine carboxylase, hydrolysis of glycosides, and acid formation from maltose, dextrin, melibiose and raffinose, as well as reactions for α-galactosidase and β-xylosidase. Whole genome similarity calculations based on recN gene sequences showed that strains T138021-75T and P224 were related at the species level (0.932), whereas 16S rRNA and partial rpoB gene sequence comparisons showed a more divergent position of strain P224 compared with the novel strains, including a different host of isolation. The results showed that the three strains of taxon 25 represent a novel species for which the name Mannheimia caviae sp. nov. is proposed. The type strain, T138021-75T ( = CCUG 59995T = DSM 23207T) was isolated from purulent conjunctivitis in guinea pigs. Previous publications have documented both ubiquinones and demethylmenaquinone to be present in the type strain. The G+C content of the DNA of the type strain has been found to be 41.4 mol% (T m).


2004 ◽  
Vol 54 (1) ◽  
pp. 115-117 ◽  
Author(s):  
Koji Suzuki ◽  
Wataru Funahashi ◽  
Masahiro Koyanagi ◽  
Hiroshi Yamashita

Three novel strains isolated from brewery environments are described. These strains were Gram-positive, facultatively anaerobic, heterofermentative rods that did not exhibit catalase activity. Phylogenetic analysis based on 16S rRNA gene sequence similarity showed that these strains belong to the genus Lactobacillus and are most closely related to Lactobacillus collinoides (approximately 99 % similarity). The novel strains could be differentiated from L. collinoides on the basis of DNA–DNA relatedness, differences in beer-spoilage ability and the inability to utilize d-fructose. These isolates represent a novel species, for which the name Lactobacillus paracollinoides sp. nov. is proposed. The type strain is LA2T (=DSM 15502T=JCM 11969T).


2010 ◽  
Vol 60 (1) ◽  
pp. 229-233 ◽  
Author(s):  
Xuesong Luo ◽  
Zhang Wang ◽  
Jun Dai ◽  
Lei Zhang ◽  
Jun Li ◽  
...  

Two Gram-staining-negative, rod-shaped, non-spore-forming bacterial strains, 1-2T and 1-4 were isolated from dry riverbed soil collected from the Xietongmen area of Tibet, China. On the basis of 16S rRNA gene sequence similarity, the novel strains were shown to belong to the genus Pedobacter, sharing <95 % sequence similarity with all recognized species of the genus Pedobacter. The major respiratory quinone was MK-7 and the predominant cellular fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (comprising iso-C16 : 1 ω7c and/or C16 : 1 ω6c). The DNA G+C contents were 37.2–37.6 mol%. Chemotaxonomic data supported the affiliation of the two new isolates to the genus Pedobacter and the results of physiological and biochemical tests confirmed that the new strains differed significantly from the recognized species of the genus Pedobacter. Therefore, the new isolates represent a novel species within the genus Pedobacter, for which the name Pedobacter glucosidilyticus sp. nov. is proposed. The type strain is 1-2T (=CCTCC AB 206110T=KCTC 22438T).


2010 ◽  
Vol 60 (5) ◽  
pp. 1044-1051 ◽  
Author(s):  
Nina V. Doronina ◽  
Elena N. Kaparullina ◽  
Yuri A. Trotsenko ◽  
Bernd Nörtemann ◽  
Margarete Bucheli-Witschel ◽  
...  

Two previously isolated strains (DSM 9103T and LPM-4T) able to grow with EDTA (facultatively and obligately, respectively) as the source of carbon, nitrogen and energy were investigated in order to clarify their taxonomic positions. The strains were strictly aerobic, Gram-negative, asporogenous and non-motile rods that required biotin for growth. Reproduction occurred by binary fission. The strains were mesophilic and neutrophilic. Their major fatty acids were summed feature 7 (consisting of C18 : 1 ω7c, C18 : 1 ω9t and/or C18 : 1 ω12t) and C19 : 0 cyclo ω8c. The polyamine pattern revealed homospermidine as a major polyamine. Predominant polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, phosphatidyldimethylethanolamine, phosphatidylmonomethylethanolamine and diphosphatidylglycerol. Mesorhizobium-specific ornithine lipid was absent. The predominant isoprenoid quinone was Q-10. The DNA G+C values were 60.8 and 63.1 mol% (T m) for strains LPM-4T and DSM 9103T, respectively. The level of 16S rRNA gene sequence similarity between these EDTA-utilizers was 99.3 % while the DNA–DNA hybridization value was only 37 %. Both strains were phylogenetically related to members of the genera Aminobacter and Mesorhizobium (95–97 % sequence similarity). However, DNA–DNA hybridization values between the novel EDTA-degrading strains and Aminobacter aminovorans DSM 7048T and Mesorhizobium loti DSM 2626T were low (10–11 %). Based on their genomic and phenotypic properties, the new alphaproteobacterial strains are assigned to a novel genus, Chelativorans gen. nov., with the names Chelativorans multitrophicus sp. nov. (type strain DSM 9103T=VKM B-2394T) and Chelativorans oligotrophicus sp. nov. (type strain LPM-4T=VKM B-2395T=DSM 19276T).


2007 ◽  
Vol 57 (7) ◽  
pp. 1396-1401 ◽  
Author(s):  
Hyung-Gwan Lee ◽  
Dong-Shan An ◽  
Wan-Taek Im ◽  
Qing-Mei Liu ◽  
Ju-Ryun Na ◽  
...  

Two novel strains belonging to the phylum Bacteroidetes [formerly the Cytophaga–Flexibacter–Bacteroides (CFB) group], designated Gsoil 040T and Gsoil 052T, were isolated from the soil of a ginseng field in Pocheon province, South Korea. A polyphasic approach was used to characterize the taxonomic position of the novel strains. Both strains were Gram-negative, aerobic, non-motile, non-spore-forming and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the novel isolates belong to the genus Chitinophaga but are clearly separated from the recognized species of this genus; gene sequence similarities between the novel isolates and type strains of recognized species ranged from 91.2 to 96.5 %. One exception was found; strain Gsoil 052T and the type strain of Chitinophaga filiformis had a gene sequence similarity of 99.6 % but had a DNA–DNA relatedness value of 38 %. Phenotypic and chemotaxonomic data (major menaquinone, MK-7; major fatty acids, iso-C15 : 0 and C16 : 1 ω5c; major hydroxy fatty acid, iso-C17 : 0 3-OH and major polyamine, homospermidine) supported the affiliation of both strains Gsoil 040T and Gsoil 052T to the genus Chitinophaga. The results of physiological and biochemical tests enabled the genotypic and phenotypic differentiation of the novel strains from the other recognized species of the genus Chitinophaga. Therefore, it is suggested that the new isolates represent two novel species, for which the names Chitinophaga ginsengisegetis sp. nov. [type strain Gsoil 040T (=KCTC 12654T=DSM 18108T)] and Chitinophaga ginsengisoli sp. nov. [type strain Gsoil 052T (=KCTC 12592T=DSM 18017T)] are proposed.


Sign in / Sign up

Export Citation Format

Share Document