scholarly journals Brevibacillus ginsengisoli sp. nov., a denitrifying bacterium isolated from soil of a ginseng field

2006 ◽  
Vol 56 (11) ◽  
pp. 2665-2669 ◽  
Author(s):  
Sang-Hoon Baek ◽  
Wan-Taek Im ◽  
Hyun Woo Oh ◽  
Jung-Sook Lee ◽  
Hee-Mock Oh ◽  
...  

A Gram-positive, rod-shaped, spore-forming bacterium, Gsoil 3088T, was isolated from soil from a ginseng field in Pocheon Province in South Korea and characterized in order to determine its taxonomic position. On the basis of 16S rRNA gene sequence similarity, strain Gsoil 3088T was shown to belong to the family Paenibacillaceae, being related to Brevibacillus centrosporus (96.6 %), Brevibacillus borstelensis (96.3 %), Brevibacillus parabrevis (96.1 %), Brevibacillus formosus (96.1 %), Brevibacillus brevis (96.1 %) and Brevibacillus laterosporus (96.0 %). The phylogenetic distances from other validly described species within the genus Brevibacillus were greater than 4.0 % (i.e. there was less than 96.0 % similarity). The G+C content of the genomic DNA was 52.1 mol%. Phenotypic and chemotaxonomic data (major menaquinone, MK-7; fatty acid profile, iso-C15 : 0, iso-C14 : 0 and anteiso-C15 : 0) supported the affiliation of strain Gsoil 3088T to the genus Brevibacillus. The results of physiological and biochemical tests allowed strain Gsoil 3088T to be distinguished genotypically and phenotypically from Brevibacillus species with validly published names. Strain Gsoil 3088T, therefore, represents a novel species of the genus Brevibacillus, for which the name Brevibacillus ginsengisoli sp. nov. is proposed. The type strain is Gsoil 3088T (=KCTC 13938T=LMG 23403T).

2010 ◽  
Vol 60 (10) ◽  
pp. 2358-2363 ◽  
Author(s):  
Sathiyaraj Srinivasan ◽  
Myung Kyum Kim ◽  
Gayathri Sathiyaraj ◽  
Vaidyanathan Veena ◽  
Muthusamy Mahalakshmi ◽  
...  

A Gram-negative, rod-shaped, motile bacterium was isolated from the soil of a ginseng field in Daejeon, South Korea, and characterized in order to determine its taxonomic position. Phylogenetic analysis based on 16S rRNA gene sequence analysis revealed that strain DCY34T belonged to the family Sphingomonadaceae, and the highest degree of sequence similarity was found with Sphingopyxis witflariensis W-50T (97.1 %), Sphingopyxis ginsengisoli Gsoil 250T (97.0 %), Sphingopyxis chilensis S37T (96.9 %), Sphingopyxis macrogoltabida IFO 15033T (96.8 %), Sphingopyxis alaskensis RB2256T (96.7 %) and Sphingopyxis taejonensis JSS54T (96.7 %). Chemotaxonomic data revealed that strain DCY34T possessed ubiquinone Q-10 as the predominant respiratory lipoquinone, which is common to members of the genus Sphingopyxis. The predominant fatty acids were C18 : 1 ω7c (27.5 %), summed feature 4 (C16 : 1 ω7c and/or C15 : 0 iso 2-OH; 18.6 %), C16 : 0 (15.6 %) and summed feature 8 (C19 : 1 ω6c and/or unknown 18.864; 15.4 %). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, sphingoglycolipid and an unknown polar lipid. The results of physiological and biochemical tests clearly demonstrated that strain DCY34T represented a separate species and supported its affiliation to the genus Sphingopyxis. Based on these data, the new isolate represents a novel species, for which the name Sphingopyxis panaciterrulae sp. nov. is proposed. The type strain is DCY34T (=KCTC 22112T=JCM 14844T).


2007 ◽  
Vol 57 (10) ◽  
pp. 2376-2380 ◽  
Author(s):  
Mubina M. Merchant ◽  
Allana K. Welsh ◽  
Robert J. C. McLean

A Gram-negative, rod-shaped, motile, non-spore-forming bacterium, designated strain A62-14BT, was isolated from a constant-temperature, spring-fed, freshwater lake. On the basis of the complete 16S rRNA gene sequence, strain A62-14BT was shown to belong to the class Gammaproteobacteria, being most closely related to Rheinheimera sp. HTB082 (96.2 % sequence similarity), Rheinheimera baltica (95.01 %), Rheinheimera pacifica (96.35 %), Rheinheimera perlucida and Alishewanella fetalis (95.9 %). The major fatty acids (C16 : 1 ω7c, 38.56 %; C16 : 0, 19.04 %; C12 : 0 3-OH, 12.83 %; C18 : 1 ω7c, 7.70 %) and the motility of strain A62-14BT support its affiliation to the genus Rheinheimera. The salt intolerance of strain A62-14BT, together with the results of other physiological and biochemical tests, allowed the differentiation of this strain from the three species of the genus Rheinheimera with validly published names. Therefore strain A62-14BT represents a novel species of the genus Rheinheimera, for which the name Rheinheimera texasensis sp. nov. is proposed. The type strain is A62-14BT (=ATCC BAA-1235T=DSM 17496T). The description of the genus Rheinheimera is emended to reflect the halointolerance and freshwater origin of strain A62-14BT.


2007 ◽  
Vol 57 (6) ◽  
pp. 1336-1341 ◽  
Author(s):  
Myung Kyum Kim ◽  
Ju-Ryun Na ◽  
Dong Ha Cho ◽  
Nak-Kyun Soung ◽  
Deok-Chun Yang

Strain Jip14T, a Gram-negative, non-spore-forming, rod-shaped, non-motile bacterium, was isolated from dried rice straw and characterized in order to determine its taxonomic position. 16S rRNA gene sequence analysis revealed that strain Jip14T belongs to the family Sphingobacteriaceae, and the highest degree of sequence similarity was determined to be to Pedobacter saltans DSM 12145T (88.5 %), Pedobacter africanus DSM 12126T (87.6 %), Pedobacter heparinus DSM 2366T (87.1 %) and Pedobacter caeni LMG 22862T (86.9 %). Chemotaxonomic data revealed that strain Jip14T possesses menaquinone MK-7 and the predominant fatty acids C15 : 0 iso, C16 : 0, C16 : 0 10-methyl, C17 : 0 iso 3-OH and summed feature 3 (C15 : 0 iso 2-OH/C16 : 1 ω7c). The results of physiological and biochemical tests clearly demonstrated that strain Jip14T represents a distinct species. Based on these data, Jip14T should be classified within a novel genus and species, for which the name Parapedobacter koreensis gen. nov., sp. nov. is proposed. The type strain of Parapedobacter koreensis is Jip14T (=KCTC 12643T=LMG 23493T).


2006 ◽  
Vol 56 (11) ◽  
pp. 2529-2533 ◽  
Author(s):  
Ho-Bin Kim ◽  
Min-Ju Park ◽  
Hee-Chan Yang ◽  
Dong-Shan An ◽  
Hai-Zhu Jin ◽  
...  

A bacterial strain (designated KMY03T) that possesses β-glucosidase activity was isolated from soil from a ginseng field in South Korea and was characterized in order to determine its taxonomic position. The bacterium was found to comprise Gram-negative, rod-shaped, motile cells with unipolar polytrichous flagella. On the basis of 16S rRNA gene sequence similarity, strain KMY03T was shown to belong to the family Burkholderiaceae of the Betaproteobacteria, being most closely related to Burkholderia caledonica LMG 19076T (97.8 %), Burkholderia terricola LMG 20594T (97.5 %), Burkholderia xenovorans LMG 21463T (97.4 %) and Burkholderia phytofirmans LMG 22146T (97.3 %). Chemotaxonomic data (major ubiquinone, Q-8; major fatty acids, C17 : 0 cyclo, C16 : 0, C19 : 0 cyclo ω8c and summed feature 2) supported the affiliation of the novel strain with the genus Burkholderia. The results of DNA–DNA hybridizations and physiological and biochemical tests allowed the strain to be differentiated genotypically and phenotypically from Burkholderia species with validly published names. On the basis of these data, strain KMY03T represents a novel species of the genus Burkholderia, for which the name Burkholderia ginsengisoli sp. nov. is proposed. The type strain is KMY03T (=KCTC 12389T=NBRC 100965T).


2010 ◽  
Vol 60 (3) ◽  
pp. 478-483 ◽  
Author(s):  
Sathiyaraj Srinivasan ◽  
Myung Kyum Kim ◽  
Gayathri Sathiyaraj ◽  
Yeon-Ju Kim ◽  
Seok-Kyu Jung ◽  
...  

Five Gram-type-positive, aerobic, rod-shaped, non-motile strains of Microbacterium (DCY 17T, Ms1, Ms2, Ms3 and Ms4) were isolated from soil from a ginseng field in Daejeon, South Korea. On the basis of 16S rRNA gene sequence similarity, these strains were shown to be related to Microbacterium esteraromaticum DSM 8609T (96.1 %), M. xylanilyticum DSM 16914T (96.0 %), M. aquimaris JS54-2T (95.6 %), M. insulae DS-66T (95.5 %), M. ketosireducens IFO 14548T (95.5 %) and M. arabinogalactanolyticum DSM 8611T (95.4 %). Chemotaxonomic data revealed that the type strain, DCY 17T, possesses menaquinones MK-12, MK-11 and MK-13 and the predominant fatty acids C15 : 0 anteiso (32.5 %), C15 : 0 iso (27.5 %), C16 : 0 iso (17.0 %), C17 : 0 anteiso (13.2 %), C17 : 0 iso (6.1 %) and C14 : 0 iso (2.1 %). The DNA G+C content of strain DCY 17T is 70.2 mol% and those of strains Ms1 to Ms4 are in the range 68.9–73.5 mol%. The physiological and biochemical tests suggested that these strains represent a novel species. Based on these data, DCY 17T (=KCTC 19237T =LMG 24010T) is classified as the type strain of a novel Microbacterium species, for which the name Microbacterium soli sp. nov. is proposed.


2006 ◽  
Vol 56 (4) ◽  
pp. 703-707 ◽  
Author(s):  
Deok-Chun Yang ◽  
Wan-Taek Im ◽  
Myung Kyum Kim ◽  
Hiroyuki Ohta ◽  
Sung-Taik Lee

Strain T5-04T, a Gram-negative, non-spore-forming, rod-shaped bacterium, was isolated from soil of a ginseng field in South Korea and characterized in order to determine its taxonomic position. 16S rRNA gene sequence analysis revealed that strain T5-04T belongs to the α-4 subgroup of the Proteobacteria, and the highest degrees of sequence similarity determined were to Sphingomonas asaccharolytica IFO 10564T (97·5 %), Sphingomonas koreensis JSS26T (97·1 %), Sphingomonas mali IFO 15500T (96·7 %) and Sphingomonas pruni IFO 15498T (96·6 %). Chemotaxonomic data revealed that strain T5-04T possesses ubiquinone Q-10 predominantly, C18 : 1 as the predominant fatty acid and sphingoglycolipids, all of which corroborate its assignment to the genus Sphingomonas. The results of DNA–DNA hybridization and physiological and biochemical tests clearly demonstrated that strain T5-04T represents a distinct species. Based on polyphasic evidence, T5-04T (=KCTC 12210T=NBRC 100801T=IAM 15213T) should be classified as the type strain of a novel Sphingomonas species, for which the name Sphingomonas soli sp. nov. is proposed.


2010 ◽  
Vol 60 (11) ◽  
pp. 2577-2582 ◽  
Author(s):  
Myungjin Lee ◽  
Sung-Geun Woo ◽  
Joonhong Park ◽  
Soon-Ae Yoo

A Gram-negative, non-motile, aerobic bacterial strain, designated MJ20T, was isolated from farm soil near Daejeon (South Korea) and was characterized taxonomically by using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain MJ20T belongs to the family Cytophagaceae, class Sphingobacteria, and was related most closely to Dyadobacter fermentans DSM 18053T (98.9 % sequence similarity), Dyadobacter beijingensis JCM 14200T (98.0 %) and Dyadobacter ginsengisoli KCTC 12589T (96.4 %). The G+C content of the genomic DNA of strain MJ20T was 48.5 mol%. The detection of MK-7 as the predominant menaquinone and a fatty acid profile with summed feature 4 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH), iso-C15 : 0, C16 : 0 and C16 : 1 ω5c as major components supported the affiliation of strain MJ20T to the genus Dyadobacter. The new isolate exhibited relatively low levels of DNA–DNA relatedness with respect to D. fermentans DSM 18053T (mean±sd of three determinations, 47±7 %) and D. beijingensis JCM 14200T (38±8 %). On the basis of its phenotypic and genotypic properties together with phylogenetic distinctiveness, strain MJ20T (=KCTC 22481T =JCM 16232T) should be classified in the genus Dyadobacter as the type strain of a novel species, for which the name Dyadobacter soli sp. nov. is proposed.


2006 ◽  
Vol 56 (9) ◽  
pp. 2031-2036 ◽  
Author(s):  
Kyoung-Ho Kim ◽  
Leonid N. Ten ◽  
Qing-Mei Liu ◽  
Wan-Taek Im ◽  
Sung-Taik Lee

A Gram-negative, strictly aerobic, rod-shaped, non-motile, non-spore-forming bacterial strain, designated TR6-04T, was isolated from compost and characterized taxonomically by using a polyphasic approach. The organism grew optimally at 30 °C and at pH 6.5–7.0. The isolate was positive for catalase and oxidase tests but negative for gelatinase, indole and H2S production. Comparative 16S rRNA gene sequence analysis showed that strain TR6-04T fell within the radiation of the cluster comprising Sphingobacterium species and clustered with Sphingobacterium mizutaii ATCC 33299T (96.7 % sequence similarity); the similarity to sequences of other species within the family Sphingobacteriaceae was less than 92.0 %. The G+C content of the genomic DNA was 38.7 mol%. The predominant respiratory quinone was MK-7. The major fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 4 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c). These chemotaxonomic data supported the affiliation of strain TR6-04T to the genus Sphingobacterium. However, on the basis of its phenotypic properties and phylogenetic distinctiveness, strain TR6-04T (=KCTC 12579T=LMG 23402T=CCUG 52468T) should be classified as the type strain of a novel species, for which the name Sphingobacterium daejeonense sp. nov. is proposed.


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4868-4872 ◽  
Author(s):  
Yan Zhao ◽  
Qingmei Liu ◽  
Myung-Suk Kang ◽  
Fengxie Jin ◽  
Hongshan Yu ◽  
...  

A Gram-reaction-negative, aerobic, non-motile and rod-shaped bacterial strain designated Gsoil 636T was isolated from soil of a ginseng cultivation field in Pocheon Province, South Korea and its taxonomic position was investigated using a polyphasic approach. Gsoil 636T grew at 18–30 °C and at pH 6.0–8.0 on R2A medium. Gsoil 636T possessed β-glucosidase activity, which was responsible for its ability to transform ginsenoside Rb1 (ones of the dominant active components of ginseng) to F2. On the basis of 16S rRNA gene sequence similarity, Gsoil 636T was shown to belong to the family Chitinophagaceae and to be related to Flavisolibacter ginsengiterrae Gsoil 492T (96.7 % sequence similarity), Flavisolibacter ginsengisoli Gsoil 643T (96.6 %) and Flavisolibacter rigui 02SUJ3T (96.6 %). The G+C content of the genomic DNA was 48.9 %. The predominant respiratory quinone was MK-7 and the major fatty acids were iso-C15 : 0, summed feature 3 (comprising C16 : 1ω6c and/or C16 : 1ω7c) and iso-C17 : 0 3-OH. DNA and chemotaxonomic data supported the affiliation of Gsoil 636T to the genus Flavisolibacter. Gsoil 636T could be differentiated genotypically and phenotypically from the species of the genus Flavisolibacter with validly published names. The isolate therefore represents a novel species, for which the name Flavisolibacter ginsenosidimutans sp. nov. is proposed, with the type strain Gsoil 636T (KCTC 22818T = JCM 18197T = KACC 14277T).


2005 ◽  
Vol 55 (5) ◽  
pp. 1997-2000 ◽  
Author(s):  
Bram Vanparys ◽  
Kim Heylen ◽  
Liesbeth Lebbe ◽  
Paul De Vos

A Gram-negative, rod-shaped, non-spore-forming bacteria was isolated from a nitrifying inoculum. On the basis of 16S rRNA gene sequence similarity, this strain, designated LMG 22951T, was shown to belong to the ‘Alphaproteobacteria’ and to be related to Devosia neptuniae (97·4 %) and Devosia riboflavina (97·0 %). The results of DNA–DNA hybridization, analysis of fatty acid composition, SDS-PAGE, physiological and biochemical tests allowed genotypic and phenotypic differentiation of LMG 22951T from the two recognized Devosia species. LMG 22951T therefore represents a novel species within this genus, for which the name Devosia limi is proposed. The type strain is LMG 22951T (=DSM 17137T).


Sign in / Sign up

Export Citation Format

Share Document