scholarly journals Burkholderia ginsengisoli sp. nov., a β-glucosidase-producing bacterium isolated from soil of a ginseng field

2006 ◽  
Vol 56 (11) ◽  
pp. 2529-2533 ◽  
Author(s):  
Ho-Bin Kim ◽  
Min-Ju Park ◽  
Hee-Chan Yang ◽  
Dong-Shan An ◽  
Hai-Zhu Jin ◽  
...  

A bacterial strain (designated KMY03T) that possesses β-glucosidase activity was isolated from soil from a ginseng field in South Korea and was characterized in order to determine its taxonomic position. The bacterium was found to comprise Gram-negative, rod-shaped, motile cells with unipolar polytrichous flagella. On the basis of 16S rRNA gene sequence similarity, strain KMY03T was shown to belong to the family Burkholderiaceae of the Betaproteobacteria, being most closely related to Burkholderia caledonica LMG 19076T (97.8 %), Burkholderia terricola LMG 20594T (97.5 %), Burkholderia xenovorans LMG 21463T (97.4 %) and Burkholderia phytofirmans LMG 22146T (97.3 %). Chemotaxonomic data (major ubiquinone, Q-8; major fatty acids, C17 : 0 cyclo, C16 : 0, C19 : 0 cyclo ω8c and summed feature 2) supported the affiliation of the novel strain with the genus Burkholderia. The results of DNA–DNA hybridizations and physiological and biochemical tests allowed the strain to be differentiated genotypically and phenotypically from Burkholderia species with validly published names. On the basis of these data, strain KMY03T represents a novel species of the genus Burkholderia, for which the name Burkholderia ginsengisoli sp. nov. is proposed. The type strain is KMY03T (=KCTC 12389T=NBRC 100965T).

2010 ◽  
Vol 60 (10) ◽  
pp. 2358-2363 ◽  
Author(s):  
Sathiyaraj Srinivasan ◽  
Myung Kyum Kim ◽  
Gayathri Sathiyaraj ◽  
Vaidyanathan Veena ◽  
Muthusamy Mahalakshmi ◽  
...  

A Gram-negative, rod-shaped, motile bacterium was isolated from the soil of a ginseng field in Daejeon, South Korea, and characterized in order to determine its taxonomic position. Phylogenetic analysis based on 16S rRNA gene sequence analysis revealed that strain DCY34T belonged to the family Sphingomonadaceae, and the highest degree of sequence similarity was found with Sphingopyxis witflariensis W-50T (97.1 %), Sphingopyxis ginsengisoli Gsoil 250T (97.0 %), Sphingopyxis chilensis S37T (96.9 %), Sphingopyxis macrogoltabida IFO 15033T (96.8 %), Sphingopyxis alaskensis RB2256T (96.7 %) and Sphingopyxis taejonensis JSS54T (96.7 %). Chemotaxonomic data revealed that strain DCY34T possessed ubiquinone Q-10 as the predominant respiratory lipoquinone, which is common to members of the genus Sphingopyxis. The predominant fatty acids were C18 : 1 ω7c (27.5 %), summed feature 4 (C16 : 1 ω7c and/or C15 : 0 iso 2-OH; 18.6 %), C16 : 0 (15.6 %) and summed feature 8 (C19 : 1 ω6c and/or unknown 18.864; 15.4 %). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, sphingoglycolipid and an unknown polar lipid. The results of physiological and biochemical tests clearly demonstrated that strain DCY34T represented a separate species and supported its affiliation to the genus Sphingopyxis. Based on these data, the new isolate represents a novel species, for which the name Sphingopyxis panaciterrulae sp. nov. is proposed. The type strain is DCY34T (=KCTC 22112T=JCM 14844T).


2006 ◽  
Vol 56 (11) ◽  
pp. 2665-2669 ◽  
Author(s):  
Sang-Hoon Baek ◽  
Wan-Taek Im ◽  
Hyun Woo Oh ◽  
Jung-Sook Lee ◽  
Hee-Mock Oh ◽  
...  

A Gram-positive, rod-shaped, spore-forming bacterium, Gsoil 3088T, was isolated from soil from a ginseng field in Pocheon Province in South Korea and characterized in order to determine its taxonomic position. On the basis of 16S rRNA gene sequence similarity, strain Gsoil 3088T was shown to belong to the family Paenibacillaceae, being related to Brevibacillus centrosporus (96.6 %), Brevibacillus borstelensis (96.3 %), Brevibacillus parabrevis (96.1 %), Brevibacillus formosus (96.1 %), Brevibacillus brevis (96.1 %) and Brevibacillus laterosporus (96.0 %). The phylogenetic distances from other validly described species within the genus Brevibacillus were greater than 4.0 % (i.e. there was less than 96.0 % similarity). The G+C content of the genomic DNA was 52.1 mol%. Phenotypic and chemotaxonomic data (major menaquinone, MK-7; fatty acid profile, iso-C15 : 0, iso-C14 : 0 and anteiso-C15 : 0) supported the affiliation of strain Gsoil 3088T to the genus Brevibacillus. The results of physiological and biochemical tests allowed strain Gsoil 3088T to be distinguished genotypically and phenotypically from Brevibacillus species with validly published names. Strain Gsoil 3088T, therefore, represents a novel species of the genus Brevibacillus, for which the name Brevibacillus ginsengisoli sp. nov. is proposed. The type strain is Gsoil 3088T (=KCTC 13938T=LMG 23403T).


2007 ◽  
Vol 57 (4) ◽  
pp. 713-716 ◽  
Author(s):  
Ying-Shun Cui ◽  
Wan-Taek Im ◽  
Cheng-Ri Yin ◽  
Deok-Chun Yang ◽  
Sung-Taik Lee

A Gram-positive, aerobic, coccus-shaped, non-endospore-forming bacterium (Gsoil 633T) was isolated from soil from a ginseng field in Pocheon province in South Korea. The novel isolate was characterized in order to determine its taxonomic position. On the basis of 16S rRNA gene sequence similarities, strain Gsoil 633T was shown to belong to the family Propionibacteriaceae. The closest phylogenetic relative was Microlunatus phosphovorus DSM 19555T, with 96.1 % sequence similarity; the sequence similarity to other members of the family was less than 95.4 %. The isolate was characterized chemotaxonomically as having ll-2,6-diaminopimelic acid in the cell-wall peptidoglycan, MK-9(H4) as the predominant menaquinone and anteiso-C15 : 0, iso-C15 : 0 and iso-C16 : 0 as the major fatty acids. The G+C content of the genomic DNA was 69.8 mol%. The morphological and chemotaxonomic properties of the isolate were consistent with those of M. phosphovorus, but the results of physiological and biochemical tests allowed the phenotypic differentiation of strain Gsoil 633T from this species. Therefore, strain Gsoil 633T represents a novel species, for which the name Microlunatus ginsengisoli sp. nov. is proposed. The type strain is Gsoil 633T (=KCTC 13940T=DSM 17942T).


2007 ◽  
Vol 57 (10) ◽  
pp. 2376-2380 ◽  
Author(s):  
Mubina M. Merchant ◽  
Allana K. Welsh ◽  
Robert J. C. McLean

A Gram-negative, rod-shaped, motile, non-spore-forming bacterium, designated strain A62-14BT, was isolated from a constant-temperature, spring-fed, freshwater lake. On the basis of the complete 16S rRNA gene sequence, strain A62-14BT was shown to belong to the class Gammaproteobacteria, being most closely related to Rheinheimera sp. HTB082 (96.2 % sequence similarity), Rheinheimera baltica (95.01 %), Rheinheimera pacifica (96.35 %), Rheinheimera perlucida and Alishewanella fetalis (95.9 %). The major fatty acids (C16 : 1 ω7c, 38.56 %; C16 : 0, 19.04 %; C12 : 0 3-OH, 12.83 %; C18 : 1 ω7c, 7.70 %) and the motility of strain A62-14BT support its affiliation to the genus Rheinheimera. The salt intolerance of strain A62-14BT, together with the results of other physiological and biochemical tests, allowed the differentiation of this strain from the three species of the genus Rheinheimera with validly published names. Therefore strain A62-14BT represents a novel species of the genus Rheinheimera, for which the name Rheinheimera texasensis sp. nov. is proposed. The type strain is A62-14BT (=ATCC BAA-1235T=DSM 17496T). The description of the genus Rheinheimera is emended to reflect the halointolerance and freshwater origin of strain A62-14BT.


2007 ◽  
Vol 57 (6) ◽  
pp. 1336-1341 ◽  
Author(s):  
Myung Kyum Kim ◽  
Ju-Ryun Na ◽  
Dong Ha Cho ◽  
Nak-Kyun Soung ◽  
Deok-Chun Yang

Strain Jip14T, a Gram-negative, non-spore-forming, rod-shaped, non-motile bacterium, was isolated from dried rice straw and characterized in order to determine its taxonomic position. 16S rRNA gene sequence analysis revealed that strain Jip14T belongs to the family Sphingobacteriaceae, and the highest degree of sequence similarity was determined to be to Pedobacter saltans DSM 12145T (88.5 %), Pedobacter africanus DSM 12126T (87.6 %), Pedobacter heparinus DSM 2366T (87.1 %) and Pedobacter caeni LMG 22862T (86.9 %). Chemotaxonomic data revealed that strain Jip14T possesses menaquinone MK-7 and the predominant fatty acids C15 : 0 iso, C16 : 0, C16 : 0 10-methyl, C17 : 0 iso 3-OH and summed feature 3 (C15 : 0 iso 2-OH/C16 : 1 ω7c). The results of physiological and biochemical tests clearly demonstrated that strain Jip14T represents a distinct species. Based on these data, Jip14T should be classified within a novel genus and species, for which the name Parapedobacter koreensis gen. nov., sp. nov. is proposed. The type strain of Parapedobacter koreensis is Jip14T (=KCTC 12643T=LMG 23493T).


Author(s):  
P. Kämpfer ◽  
N. Lodders ◽  
E. Falsen

Three bacterial strains, designated CCUG 51397T, CCUG 53736 and CCUG 53920, isolated from water samples taken at different locations in southern Sweden were studied to determine their taxonomic position using a polyphasic approach. Comparative analysis of 16S rRNA gene sequences showed that these bacteria had <93 % sequence similarity to all described species of the genera Sediminibacterium, Lacibacter, Flavihumibacter, Flavisolibacter, Niabella, Niastella, Segetibacter, Parasegetibacter, Terrimonas, Ferruginibacter, Filimonas and Chitinophaga. The three organisms grouped most closely with Sediminibacterium salmoneum NJ-44T but showed only 92.5 % sequence similarity to this strain, the only recognized species of this genus. The fatty acid profiles showed large amounts of iso-C15 : 0, iso-C17 : 0 3-OH and iso-C15 : 1 G with smaller amounts of iso-C15 : 0 3-OH, iso-C16 : 0 3-OH and other fatty acids, which differentiated the novel strains from related genera. Biochemical tests performed on strains CCUG 51397T, CCUG 53736 and CCUG 53920 also gave different results from those of Sediminibacterium salmoneum NJ-44T and other related genera. Based on this evidence, strains CCUG 51397T, CCUG 53736 and CCUG 53920 represent a novel species of a new genus, for which the name Hydrotalea flava gen. nov., sp. nov. is proposed. The type strain of Hydrotalea flava is CCUG 51397T (=CCM 7760T). A formal allocation of the genera Sediminibacterium, Lacibacter, Flavihumibacter, Flavisolibacter, Niabella, Niastella, Segetibacter, Parasegetibacter, Terrimonas, Ferruginibacter, Filimonas and Chitinophaga to the family Chitinophagaceae fam. nov. is also proposed.


2005 ◽  
Vol 55 (5) ◽  
pp. 1997-2000 ◽  
Author(s):  
Bram Vanparys ◽  
Kim Heylen ◽  
Liesbeth Lebbe ◽  
Paul De Vos

A Gram-negative, rod-shaped, non-spore-forming bacteria was isolated from a nitrifying inoculum. On the basis of 16S rRNA gene sequence similarity, this strain, designated LMG 22951T, was shown to belong to the ‘Alphaproteobacteria’ and to be related to Devosia neptuniae (97·4 %) and Devosia riboflavina (97·0 %). The results of DNA–DNA hybridization, analysis of fatty acid composition, SDS-PAGE, physiological and biochemical tests allowed genotypic and phenotypic differentiation of LMG 22951T from the two recognized Devosia species. LMG 22951T therefore represents a novel species within this genus, for which the name Devosia limi is proposed. The type strain is LMG 22951T (=DSM 17137T).


2010 ◽  
Vol 60 (1) ◽  
pp. 229-233 ◽  
Author(s):  
Xuesong Luo ◽  
Zhang Wang ◽  
Jun Dai ◽  
Lei Zhang ◽  
Jun Li ◽  
...  

Two Gram-staining-negative, rod-shaped, non-spore-forming bacterial strains, 1-2T and 1-4 were isolated from dry riverbed soil collected from the Xietongmen area of Tibet, China. On the basis of 16S rRNA gene sequence similarity, the novel strains were shown to belong to the genus Pedobacter, sharing <95 % sequence similarity with all recognized species of the genus Pedobacter. The major respiratory quinone was MK-7 and the predominant cellular fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (comprising iso-C16 : 1 ω7c and/or C16 : 1 ω6c). The DNA G+C contents were 37.2–37.6 mol%. Chemotaxonomic data supported the affiliation of the two new isolates to the genus Pedobacter and the results of physiological and biochemical tests confirmed that the new strains differed significantly from the recognized species of the genus Pedobacter. Therefore, the new isolates represent a novel species within the genus Pedobacter, for which the name Pedobacter glucosidilyticus sp. nov. is proposed. The type strain is 1-2T (=CCTCC AB 206110T=KCTC 22438T).


2007 ◽  
Vol 57 (11) ◽  
pp. 2618-2622 ◽  
Author(s):  
Elke Lang ◽  
Jolantha Swiderski ◽  
Erko Stackebrandt ◽  
P. Schumann ◽  
Cathrin Spröer ◽  
...  

A Gram-negative, rod-shaped, non-spore-forming bacterium (strain NS11T) was isolated from a lichen-colonized rock surface. On the basis of 16S rRNA gene sequence similarity, strain NS11T was shown to belong to the Betaproteobacteria, and was most closely related to Herminiimonas arsenicoxydans ULPAs1T (98.8 %), Herminiimonas aquatilis CCUG 36956T (98.0 %) and Herminiimonas fonticola S-94T (98.0 %). Major whole-cell fatty acids were C16 : 0, C17 : 0 cyclo and C16 : 1 ω7c. Strain NS11T also contained high proportions of C10 : 0 3-OH and C18 : 1 ω7c. This pattern is typical for members of the genus Herminiimonas. The results of DNA–DNA hybridization experiments and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain NS11T from the three recognized Herminiimonas species. It is therefore concluded that strain NS11T represents a novel species of the genus Herminiimonas, for which the name Herminiimonas saxobsidens sp. nov. is proposed. The type strain is NS11T (=DSM 18748T=CCM 7436T).


2006 ◽  
Vol 56 (8) ◽  
pp. 1939-1944 ◽  
Author(s):  
Qing-Mei Liu ◽  
Wan-Taek Im ◽  
Myungjin Lee ◽  
Deok-Chun Yang ◽  
Sung-Taik Lee

A Gram-negative, aerobic, non-motile, non-spore-forming and rod-shaped bacterium, strain Gsoil 043T, was isolated from soil from a ginseng field in Pocheon province, South Korea. The novel isolate was characterized in order to determine its taxonomic position. On the basis of 16S rRNA gene sequence similarity, strain Gsoil 043T was shown to belong to the family ‘Flexibacteraceae’ and was related to Dyadobacter fermentans (96.7 %), Dyadobacter crusticola (96.3 %) and Dyadobacter hamtensis (95.8 %). The 16S rRNA gene sequence similarity of the novel strain to other recognized species within the family ‘Flexibacteraceae’ was less than 87.0 %. The G+C content of genomic DNA was 48 mol%. Phenotypic and chemotaxonomic data (major menaquinone, MK-7; major fatty acids, C16 : 1 ω7c, iso-C15 : 0 and C16 : 0) supported the affiliation of strain Gsoil 043T to the genus Dyadobacter. The results of physiological and biochemical tests enabled strain Gsoil 043T to be differentiated genotypically and phenotypically from the three Dyadobacter species with validly published names. The novel isolate therefore represents a novel species for which the name Dyadobacter ginsengisoli sp. nov. is proposed, with the type strain Gsoil 043T (=KCTC 12589T=LMG 23409T).


Sign in / Sign up

Export Citation Format

Share Document