scholarly journals Aerococcus suis sp. nov., isolated from clinical specimens from swine

2007 ◽  
Vol 57 (6) ◽  
pp. 1291-1294 ◽  
Author(s):  
A. I. Vela ◽  
N. García ◽  
M. V. Latre ◽  
A. Casamayor ◽  
C. Sánchez-Porro ◽  
...  

Biochemical and molecular genetic studies were performed for five isolates of unknown Gram-positive, catalase-negative, cocci-shaped micro-organisms obtained from clinical samples from pigs. The micro-organisms were tentatively identified as Aerococcus species on the basis of the results from cellular morphological and biochemical tests. 16S rRNA gene sequencing studies confirmed the provisional identification of the isolates as members of the genus Aerococcus, but the micro-organism did not correspond to any recognized species of this genus. The nearest phylogenetic relatives of these unknown cocci isolated from pigs were Aerococcus viridans (95.9 % 16S rRNA gene sequence similarity) and Aerococcus urinaeequi (95.8 %). The unknown bacterium, however, was distinguishable from these two species and from other animal aerococci by using biochemical tests. On the basis of both phenotypic and phylogenetic findings, the isolates represent a novel species of the genus Aerococcus, for which the name Aerococcus suis sp. nov. is proposed. The type strain is 1821/02T (=CECT 7139T=CCUG 52530T).

2006 ◽  
Vol 56 (11) ◽  
pp. 2671-2676 ◽  
Author(s):  
Ana I. Vela ◽  
María C. Gutiérrez ◽  
Enevold Falsen ◽  
Eduardo Rollán ◽  
Isabel Simarro ◽  
...  

An unusual Gram-negative, catalase- and oxidase-positive, rod-shaped bacterium isolated from different clinical samples from two monkeys (Callithrix geoffroyi) was characterized by phenotypic and molecular genetic methods. The micro-organism was tentatively identified as a Pseudomonas species on the basis of the results of cellular morphological and biochemical tests. Fatty acid studies confirmed this generic placement and comparative 16S rRNA gene sequencing studies demonstrated that the unknown isolates were phylogenetically closely related to each other (100 % sequence similarity) and were part of the ‘Pseudomonas fluorescens intrageneric cluster’. The novel bacterium, however, was distinguished from other phylogenetically related species of Pseudomonas by DNA–DNA hybridization studies and biochemical tests. On the basis of both phenotypic and phylogenetic findings, it is proposed that the novel Pseudomonas isolates are classified as Pseudomonas simiae sp. nov. The type strain of P. simiae is OLiT (=CCUG 50988T=CECT 7078T).


2011 ◽  
Vol 61 (12) ◽  
pp. 2962-2966 ◽  
Author(s):  
Alicia Gibello ◽  
Ana I. Vela ◽  
Margarita Martín ◽  
Gerardo Mengs ◽  
Pilar Z. Alonso ◽  
...  

Two unusual, Gram-negative, catalase- and oxidase-positive rods, designated C2T and C5, were isolated from compost samples. Comparative 16S rRNA gene sequencing studies demonstrated that both isolates were members of the genus Pseudomonas and belonged to the Pseudomonas aeruginosa group. Strain C2T was most closely related to Pseudomonas cuatrocienegasensis 1NT and Pseudomonas borbori R-20821T (97.9 and 97.8 % 16S rRNA gene sequence similarity, respectively). However, phylogenetic analysis based on rpoD gene sequences revealed that both isolates could be discriminated from members of the P. aeruginosa group that exhibited >97 % 16S rRNA gene sequence similarity. The DNA G+C content of strain C2T was 61.5 mol%. The major fatty acids of strain C2T were a summed feature (C16 : 1ω7c and/or iso-C15 : 0 2-OH), C18 : 1ω7c/12t/9t, C16 : 0 and C12 : 0, which supported the isolates’ affiliation with the genus Pseudomonas. Moreover, strain C2T could be distinguished from its closest phylogenetic neighbours of the genus Pseudomonas by DNA–DNA hybridization studies and biochemical tests. On the basis of both phenotypic and phylogenetic findings, it is proposed that the isolates be classified as a novel species, with the name Pseudomonas composti sp. nov. The type strain is C2T ( = CECT 7516T = CCUG 59231T).


2013 ◽  
Vol 63 (Pt_8) ◽  
pp. 2782-2786 ◽  
Author(s):  
Kazuko Takada ◽  
Masanori Saito ◽  
Osamu Tsudukibashi ◽  
Takachika Hiroi ◽  
Masatomo Hirasawa

Four Gram-positive, catalase-negative, coccoid isolates that were obtained from donkey oral cavities formed two distinct clonal groups when characterized by phenotypic and phylogenetic studies. From the results of biochemical tests, the organisms were tentatively identified as a streptococcal species. Comparative 16S rRNA gene sequencing studies confirmed the organisms to be members of the genus Streptococcus . Two of the isolates were related most closely to Streptococcus ursoris with 95.6 % similarity based on the 16S rRNA gene and to Streptococcus ratti with 92.0 % similarity based on the 60 kDa heat-shock protein gene (groEL). The other two isolates, however, were related to Streptococcus criceti with 95.0 and 89.0 % similarities based on the 16S rRNA and groEL genes, respectively. From both phylogenetic and phenotypic evidence, the four isolates formed two distinct clonal groups and are suggested to represent novel species of the genus Streptococcus . The names proposed for these organisms are Streptococcus orisasini sp. nov. (type strain NUM 1801T = JCM 17942T = DSM 25193T) and Streptococcus dentasini sp. nov. (type strain NUM 1808T = JCM 17943T = DSM 25137T).


2014 ◽  
Vol 64 (Pt_9) ◽  
pp. 3288-3292 ◽  
Author(s):  
Masanori Saito ◽  
Noriko Shinozaki-Kuwahara ◽  
Masatomo Hirasawa ◽  
Kazuko Takada

Four Gram-stain-positive, catalase-negative, coccoid-shaped organisms were isolated from elephant oral cavities. The isolates were tentatively identified as streptococcal species based on the results of biochemical tests. Comparative 16S rRNA gene sequencing studies confirmed the organisms to be members of the genus Streptococcus . Two isolates (NUM 6304T and NUM 6312) were related most closely to Streptococcus salivarius with 96.8 % and 93.1 % similarity based on the 16S rRNA gene and the RNA polymerase β subunit encoding gene (rpoB), respectively, and to Streptococcus vestibularis with 83.7 % similarity based on the 60 kDa heat-shock protein gene (groEL). The other two isolates (NUM 6306T and NUM 6318) were related most closely to S. vestibularis with 97.0 % and 82.9 % similarity based on the 16S rRNA and groEL genes, respectively, and to S. salivarius with 93.5 % similarity based on the rpoB gene. Based on phylogenetic and phenotypic evidence, these isolates are suggested to represent novel species of the genus Streptococcus , for which the names Streptococcus loxodontisalivarius sp. nov. (type strain NUM 6304T = JCM 19287T = DSM 27382T) and Streptococcus saliviloxodontae sp. nov. (type strain NUM 6306T = JCM 19288T = DSM 27513T) are proposed.


2011 ◽  
Vol 61 (8) ◽  
pp. 1989-1993 ◽  
Author(s):  
A. I. Vela ◽  
G. Mentaberre ◽  
I. Marco ◽  
R. Velarde ◽  
S. Lavín ◽  
...  

Biochemical and molecular genetic studies were performed on an unknown Gram-stain-positive, catalase-negative, coccus-shaped organism isolated from clinical samples of a Pyrenean chamois. The micro-organism was identified as a streptococcal species based on its cellular morphological and biochemical tests. 16S rRNA gene sequence comparison studies confirmed its identification as a member of the genus Streptococcus, but the organism did not correspond to any species of this genus. The nearest phylogenetic relative of the unknown coccus from chamois was Streptococcus ovis (95.9 % 16S rRNA gene sequence similarity). The rpoB and sodA sequence analysis showed sequence similarity values of less than 85.7 % and 83.0 %, respectively, with the currently recognized species of the genus Streptococcus. The novel bacterial isolate was distinguished from S. ovis and other species of the genus Streptococcus using biochemical tests. Based on both phenotypic and phylogenetic findings, it is proposed that the unknown bacterium be classified as a novel species of the genus Streptococcus, Streptococcus rupicaprae sp. nov., with the type strain 2777-2-07T ( = CECT 7718T  = CCUG 59652T).


2006 ◽  
Vol 56 (9) ◽  
pp. 2199-2202 ◽  
Author(s):  
Hang-Yeon Weon ◽  
Byung-Yong Kim ◽  
Seung-Hee Yoo ◽  
Jong-Shik Kim ◽  
Soon-Wo Kwon ◽  
...  

A bacterial strain, GA2-M3T, isolated from a sea-sand sample in Korea, was subjected to polyphasic taxonomic characterization. Cells of strain GA2-M3T were Gram-negative, non-motile, non-spore-forming and short rod- to ovoid-shaped. Comparative 16S rRNA gene sequencing studies confirmed that the bacterium fell within the radiation of the genus Loktanella. Similarity levels between the 16S rRNA gene sequence of strain GA2-M3T and those of type strains of Loktanella species with validly published names were 93.5–96.1 %; highest sequence similarity was with Loktanella rosea. The G+C content of the genomic DNA of strain GA2-M3T was 60.0 mol% and the predominant ubiquinone was Q-10. Major fatty acids were 18 : 1ω7c, 18 : 0 and 18 : 1ω7c 11-methyl. On the basis of the evidence presented, it is proposed that strain GA2-M3T represents a novel species, for which the name Loktanella koreensis sp. nov. is proposed. The type strain is GA2-M3T (=KACC 11519T=DSM 17925T).


2011 ◽  
Vol 61 (9) ◽  
pp. 2278-2283 ◽  
Author(s):  
Peter Kämpfer ◽  
Bettina Huber ◽  
Hans-Jürgen Busse ◽  
Holger C. Scholz ◽  
Herbert Tomaso ◽  
...  

Two Gram-negative, rod-shaped, non-spore-forming strains, designated 08RB2639T and 08RB2781-1, were isolated from a sheep (Ovis aries) and a domestic boar (Sus scrofa domestica), respectively. By 16S rRNA gene sequencing, the isolates revealed identical sequences and were shown to belong to the Alphaproteobacteria. They exhibited 97.8 % 16S rRNA gene sequence similarity with Ochrobactrum rhizosphaerae PR17T, O. pituitosum CCUG 50899T, O. tritici SCII24T and O. haematophilum CCUG 38531T and 97.4 % sequence similarity with O. cytisi ESC1T, O. anthropi LMG 3331T and O. lupini LUP21T. The recA gene sequences of the two isolates showed only minor differences (99.5 % recA sequence similarity), and strain 08RB2639T exhibited the highest recA sequence similarity with Ochrobactrum intermedium CCUG 24694T (91.3 %). The quinone system was ubiquinone Q-10, with minor amounts of Q-9 and Q-11, the major polyamines were spermidine, putrescine and sym-homospermidine and the major lipids were phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylcholine, with moderate amounts of the Ochrobactrum-specific unidentified aminolipid AL2. The major fatty acids (>20 %) were C18 : 1ω7c and C19 : 0 cyclo ω8c. These traits were in excellent agreement with the assignment of the isolates to the genus Ochrobactrum. DNA–DNA relatedness and physiological and biochemical tests allowed genotypic and phenotypic differentiation from other members of the genus Ochrobactrum. Hence, it is concluded that the isolates represent a novel species, for which the name Ochrobactrum pecoris sp. nov. is proposed (type strain 08RB2639T  = DSM 23868T  = CCUG 60088T  = CCM 7822T).


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 2903-2907 ◽  
Author(s):  
Ana I. Vela ◽  
Encarna Casas-Díaz ◽  
Santiago Lavín ◽  
Lucas Domínguez ◽  
Jose F. Fernández-Garayzábal

Four isolates of an unknown Gram-stain-positive, catalase-negative coccus-shaped organism, isolated from the pharynx of four wild rabbits, were characterized by phenotypic and molecular genetic methods. The micro-organisms were tentatively assigned to the genus Streptococcus based on cellular morphological and biochemical criteria, although the organisms did not appear to correspond to any species with a validly published name. Comparative 16S rRNA gene sequencing confirmed their identification as members of the genus Streptococcus, being most closely related phylogenetically to Streptococcus porcorum 682-03T (96.9  % 16S rRNA gene sequence similarity). Analysis of rpoB and sodA gene sequences showed divergence values between the novel species and S. porcorum 682-03T (the closest phylogenetic relative determined from 16S rRNA gene sequences) of 18.1 and 23.9  %, respectively. The novel bacterial isolate could be distinguished from the type strain of S. porcorum by several biochemical characteristics, such as the production of glycyl-tryptophan arylamidase and α-chymotrypsin, and the non-acidification of different sugars. Based on both phenotypic and phylogenetic findings, it is proposed that the unknown bacterium be assigned to a novel species of the genus Streptococcus, and named Streptococcus pharyngis sp. nov. The type strain is DICM10-00796BT ( = CECT 8754T = CCUG 66496T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 873-878 ◽  
Author(s):  
Gui-Qin Yang ◽  
Jun Zhang ◽  
Soon-Wo Kwon ◽  
Shun-Gui Zhou ◽  
Lu-Chao Han ◽  
...  

A Gram-negative, rod-shaped, non-spore-forming bacterium, designated SgZ-1T, was isolated from the anode biofilm of a microbial fuel cell. The strain had the ability to grow under anaerobic condition via the oxidation of various organic compounds coupled to the reduction of anthraquione-2,6-disulfonate (AQDS) to anthrahydroquinone-2,6-disulfonate (AHQDS). Growth occurred in TSB in the presence of 0–5.5 % (w/v) NaCl (optimum 0–1 %), at 10–45 °C (optimum 25–37 °C) and at pH 6.0–10.0 (optimum 8.0–8.5). Based on 16S rRNA gene sequence similarity, strain SgZ-1T belonged to the genus Thauera . The highest level of 16S rRNA gene sequences similarity (96.7 %) was found to be with Thauera aminoaromatica S2 T and Thauera selenatis AXT, and lower values were obtained when compared with other recognized Thauera species. Chemotaxonomic analysis revealed that strain SgZ-1T contained Q-8 as the predominant quinone, and putrescine and 2-hydroxyputrescine as the major polyamines. The major cellular fatty acids (>5 %) were C16 : 1ω6c and/or C16 : 1ω7c (44.6 %), C16 : 0 (18.8 %), and C18 : 1ω6c and/or C18 : 1ω7c (12.7 %). Based on its phenotypic and phylogenetic properties, chemotaxonomic analysis and the results of physiological and biochemical tests, strain SgZ-1T ( = KACC 16524T = CCTCC M 2011497T) was designated the type strain of a novel species of the genus Thauera , for which the name Thauera humireducens sp. nov. was proposed.


2007 ◽  
Vol 57 (8) ◽  
pp. 1834-1839 ◽  
Author(s):  
Min-Ho Yoon ◽  
Wan-Taek Im

Two strains (Gsoil 492T and Gsoil 643T) isolated in Pocheon Province, South Korea, from soil used for ginseng cultivation were characterized using a polyphasic approach. Both isolates comprised Gram-negative, aerobic, non-motile, rod-shaped bacteria. They had similar chemotaxonomic characteristics, e.g. containing MK-7 as the major quinone, having a DNA G+C content in the range 42.5–43.3 mol% and possessing iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. A phylogenetic analysis based on 16S rRNA gene sequences indicated that the two isolates formed a tight cluster with several uncultured bacterial clones and with the established genera Terrimonas, Niastella and Chitinophaga in the phylum Bacteroidetes but were clearly separate from these genera. The levels of 16S rRNA gene sequence similarity between the isolates and type strains of related genera ranged from 87.5 to 92.4 %. Furthermore, the results of physiological and biochemical tests allowed phenotypic differentiation of the isolates from phylogenetically closely related species with validly published names. The level of 16S rRNA gene sequence similarity between the two strains was 99.5 %, whereas the DNA–DNA relatedness value was 44 %, indicating that they represent separate species. On the basis of the polyphasic evidence, a novel genus, Flavisolibacter gen. nov., and two novel species, Flavisolibacter ginsengiterrae sp. nov. (type strain Gsoil 492T=KCTC 12656T=DSM 18136T) and Flavisolibacter ginsengisoli sp. nov. (type strain Gsoil 643T=KCTC 12657T=DSM 18119T), are proposed. Flavisolibacter ginsengiterrae is the type species of the genus.


Sign in / Sign up

Export Citation Format

Share Document