scholarly journals Streptococcus loxodontisalivarius sp. nov. and Streptococcus saliviloxodontae sp. nov., isolated from oral cavities of elephants

2014 ◽  
Vol 64 (Pt_9) ◽  
pp. 3288-3292 ◽  
Author(s):  
Masanori Saito ◽  
Noriko Shinozaki-Kuwahara ◽  
Masatomo Hirasawa ◽  
Kazuko Takada

Four Gram-stain-positive, catalase-negative, coccoid-shaped organisms were isolated from elephant oral cavities. The isolates were tentatively identified as streptococcal species based on the results of biochemical tests. Comparative 16S rRNA gene sequencing studies confirmed the organisms to be members of the genus Streptococcus . Two isolates (NUM 6304T and NUM 6312) were related most closely to Streptococcus salivarius with 96.8 % and 93.1 % similarity based on the 16S rRNA gene and the RNA polymerase β subunit encoding gene (rpoB), respectively, and to Streptococcus vestibularis with 83.7 % similarity based on the 60 kDa heat-shock protein gene (groEL). The other two isolates (NUM 6306T and NUM 6318) were related most closely to S. vestibularis with 97.0 % and 82.9 % similarity based on the 16S rRNA and groEL genes, respectively, and to S. salivarius with 93.5 % similarity based on the rpoB gene. Based on phylogenetic and phenotypic evidence, these isolates are suggested to represent novel species of the genus Streptococcus , for which the names Streptococcus loxodontisalivarius sp. nov. (type strain NUM 6304T = JCM 19287T = DSM 27382T) and Streptococcus saliviloxodontae sp. nov. (type strain NUM 6306T = JCM 19288T = DSM 27513T) are proposed.

2013 ◽  
Vol 63 (Pt_8) ◽  
pp. 2782-2786 ◽  
Author(s):  
Kazuko Takada ◽  
Masanori Saito ◽  
Osamu Tsudukibashi ◽  
Takachika Hiroi ◽  
Masatomo Hirasawa

Four Gram-positive, catalase-negative, coccoid isolates that were obtained from donkey oral cavities formed two distinct clonal groups when characterized by phenotypic and phylogenetic studies. From the results of biochemical tests, the organisms were tentatively identified as a streptococcal species. Comparative 16S rRNA gene sequencing studies confirmed the organisms to be members of the genus Streptococcus . Two of the isolates were related most closely to Streptococcus ursoris with 95.6 % similarity based on the 16S rRNA gene and to Streptococcus ratti with 92.0 % similarity based on the 60 kDa heat-shock protein gene (groEL). The other two isolates, however, were related to Streptococcus criceti with 95.0 and 89.0 % similarities based on the 16S rRNA and groEL genes, respectively. From both phylogenetic and phenotypic evidence, the four isolates formed two distinct clonal groups and are suggested to represent novel species of the genus Streptococcus . The names proposed for these organisms are Streptococcus orisasini sp. nov. (type strain NUM 1801T = JCM 17942T = DSM 25193T) and Streptococcus dentasini sp. nov. (type strain NUM 1808T = JCM 17943T = DSM 25137T).


2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 615-624 ◽  
Author(s):  
A. F. Yassin ◽  
C. Spröer ◽  
R. Pukall ◽  
M. Sylvester ◽  
C. Siering ◽  
...  

The remarkable host specificity of the species of the genus Actinobaculum led us to recharacterize these species by a polyphasic approach. A comparative chemotaxonomic study including analysis of whole-cell sugars, amino acid composition of the peptidoglycan, fatty acid methyl esters, respiratory quinones and polar lipids revealed significant differences that, in combination with molecular data, support a dissection of the genus Actinobaculum . The proposals of this study include the reclassification of Actinobaculum schaalii and Actinobaculum urinale as Actinotignum schaalii gen. nov., comb. nov. (type strain DSM 15541T = CCUG 27420T) and Actinotignum urinale comb. nov. (type strain DSM 15805T = CCUG 46093T), respectively. Emended descriptions of the genus Actinobaculum and Actinomyces suis are also provided. The results of 16S rRNA gene sequence analysis and DNA–DNA hybridization also indicated that the type strain of Actinobaculum massiliense deposited as CCUG 47753T ( = DSM 19118T) should in fact be considered a member of the species Actinobaculum schaalii . In addition, comparative 16S rRNA gene sequencing and DNA–DNA relatedness studies of four strains recovered from clinical materials demonstrated that three of the isolates belonged to Actinotignum schaalii; the remaining strain represents a novel species, for which the name Actinotignum sanguinis sp. nov. is proposed. The type strain is IMMIB L-2199T ( = DSM 26039T = CCUG 64068T).


2014 ◽  
Vol 64 (Pt_7) ◽  
pp. 2486-2490 ◽  
Author(s):  
A. I. Vela ◽  
V. Sánchez del Rey ◽  
L. Zamora ◽  
A. Casamayor ◽  
L. Domínguez ◽  
...  

Biochemical and molecular genetic studies were performed on four unknown Gram-stain-positive, catalase-negative, coccus-shaped organisms isolated from tonsils (n = 3) and nasal samples (n = 1) of four wild rabbits. The micro-organism was identified as a streptococcal species based on its cellular morphological and biochemical tests. Comparative 16S rRNA gene sequencing confirmed its identification as a member of the genus Streptococcus , but the organism did not correspond to any recognized species of this genus. The closest phylogenetic relative of the unknown cocci from wild rabbits was Streptococcus acidominimus NCIMB 702025T (97.9 % 16S rRNA gene sequence similarity). rpoB and sodA sequence analysis of the novel isolate showed interspecies divergence of 16.2 % and 20.3 %, respectively, from the type strain of its closest 16S rRNA gene phylogenetic relative, S. acidominimus . The novel bacterial isolate could be distinguished from the type strain of S. acidominimus by several biochemical characteristics, such as the production of esterase C4, acid phosphatase and naphthol-AS-BI-phosphohydrolase and acidification of different sugars. Based on both phenotypic and phylogenetic findings, it is proposed that the unknown bacterium be classified as a novel species of the genus Streptococcus , Streptococcus cuniculi sp. nov. The type strain is NED12-00049-6BT ( = CECT 8498T = CCUG 65085T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1819-1824 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Chul-Hyung Kang ◽  
Song-Gun Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, aerobic and pleomorphic bacterium, designated BS-W13T, was isolated from a tidal flat on the South Sea, South Korea, and its taxonomic position was investigated using a polyphasic approach. Strain BS-W13T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 1.0–2.0 % (w/v) NaCl. Neighbour-joining and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain BS-W13T clustered with the type strain of Seohaeicola saemankumensis , showing the highest sequence similarity (95.96 %) to this strain. Strain BS-W13T exhibited 16S rRNA gene sequence similarity values of 95.95, 95.91, 95.72 and 95.68 % to the type strains of Sulfitobacter donghicola , Sulfitobacter porphyrae , Sulfitobacter mediterraneus and Roseobacter litoralis , respectively. Strain BS-W13T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The polar lipid profile of strain BS-W13T, containing phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid as major components, was distinguishable from those of some phylogenetically related taxa. The DNA G+C content of strain BS-W13T was 58.1 mol%. The phylogenetic data and differential chemotaxonomic and other phenotypic properties revealed that strain BS-W13T constitutes a novel genus and species within family Rhodobacteraceae of the class Alphaproteobacteria , for which the name Pseudoseohaeicola caenipelagi gen. nov., sp. nov. is proposed. The type strain is BS-W13T ( = KCTC 42349T = CECT 8724T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 873-878 ◽  
Author(s):  
Gui-Qin Yang ◽  
Jun Zhang ◽  
Soon-Wo Kwon ◽  
Shun-Gui Zhou ◽  
Lu-Chao Han ◽  
...  

A Gram-negative, rod-shaped, non-spore-forming bacterium, designated SgZ-1T, was isolated from the anode biofilm of a microbial fuel cell. The strain had the ability to grow under anaerobic condition via the oxidation of various organic compounds coupled to the reduction of anthraquione-2,6-disulfonate (AQDS) to anthrahydroquinone-2,6-disulfonate (AHQDS). Growth occurred in TSB in the presence of 0–5.5 % (w/v) NaCl (optimum 0–1 %), at 10–45 °C (optimum 25–37 °C) and at pH 6.0–10.0 (optimum 8.0–8.5). Based on 16S rRNA gene sequence similarity, strain SgZ-1T belonged to the genus Thauera . The highest level of 16S rRNA gene sequences similarity (96.7 %) was found to be with Thauera aminoaromatica S2 T and Thauera selenatis AXT, and lower values were obtained when compared with other recognized Thauera species. Chemotaxonomic analysis revealed that strain SgZ-1T contained Q-8 as the predominant quinone, and putrescine and 2-hydroxyputrescine as the major polyamines. The major cellular fatty acids (>5 %) were C16 : 1ω6c and/or C16 : 1ω7c (44.6 %), C16 : 0 (18.8 %), and C18 : 1ω6c and/or C18 : 1ω7c (12.7 %). Based on its phenotypic and phylogenetic properties, chemotaxonomic analysis and the results of physiological and biochemical tests, strain SgZ-1T ( = KACC 16524T = CCTCC M 2011497T) was designated the type strain of a novel species of the genus Thauera , for which the name Thauera humireducens sp. nov. was proposed.


2020 ◽  
Vol 70 (10) ◽  
pp. 5287-5295 ◽  
Author(s):  
Yajun Ge ◽  
Yuanmeihui Tao ◽  
Jing Yang ◽  
Xin-He Lai ◽  
Dong Jin ◽  
...  

Four unknown strains belonging to the genus Arthrobacter were isolated from plateau wildlife on the Qinghai–Tibet Plateau of PR China. Phylogenetic analysis based on 16S rRNA gene sequences showed that the four isolates were separated into two clusters. Cluster I (strains 785T and 208) had the greatest 16S rRNA gene sequence similarity to Arthrobacter citreus (98.6 and 98.7 %, respectively), Arthrobacter luteolus (98.0 and 98.1%, respectively), Arthrobacter gandavensis (97.9 and 98.0 %, respectively) and Arthrobacter koreensis (97.6 and 97.7 %, respectively). Likewise, cluster II (strains J391T and J915) had the highest sequence similarity to Arthrobacter ruber (98.6 and 98.3 %, respectively) and Arthrobacter agilis (98.1 and 97.9  %, respectively). Average nucleotide identity and the digital DNA–DNA hybridization values illustrated that the two type strains, 785T and J391T, represented two separate novel species that are distinct from all currently recognized species in the genus Arthrobacter . These strains had DNA G+C contents of 66.0–66.1 mol% (cluster I) and 68.0 mol% (cluster II). The chemotaxonomic properties of strains 785T and J391T were in line with those of the genus Arthrobacter : anteiso-C15:0 (79.3 and 40.8 %, respectively) as the major cellular fatty acid, MK-8(H2) (65.8 %) or MK-9(H2) (75.6 %) as the predominant respiratory quinone, a polar lipid profile comprising diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, glycolipids and phospholipid, and A3α or A4α as the cell wall peptidoglycan type. On the basis of our results, two novel species in the genus Arthrobacter are proposed, namely Arthrobacter yangruifuii sp. nov. (type strain, 785T=CGMCC 1.16725T=GDMCC 1.1592T=JCM 33491T) and Arthrobacter zhaoguopingii sp. nov. (type strain, J391T=CGMCC 1.17382T=GDMCC 1.1667T=JCM 33841T).


2020 ◽  
Vol 70 (12) ◽  
pp. 6301-6306
Author(s):  
Sooyeon Park ◽  
Seo Yeon Lee ◽  
Wonyong Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, aerobic, non-spore-forming, motile by single polar flagellum and ovoid or rod-shaped bacterial strain, designated JBTF-M23T, was isolated from tidal flat sediment collected from the Yellow Sea, Republic of Korea. Neighbour-joining phylogenetic tree of 16S rRNA gene sequences showed that strain JBTF-M23T fell within the clade comprising the type strains of Pseudoalteromonas species, clustering with the type strains of P. byunsanensis and P. amylolytica . Strain JBTF-M23T exhibited the highest 16S rRNA gene sequence similarity value (98.6 %) to the type strain of P. rubra and sequence similarities of 98.3 and 97.7 % to the type strains of P. byunsanensis and P. amylolytica, respectively. The DNA G+C content of strain JBTF-M23T from genomic sequence data was 41.98 %. The ANI and dDDH values between strain JBTF-M23T and the type strains of P. rubra , P. byunsanensis and P. amylolytica were 71.3–76.6 and 19.4–19.9 %, respectively. Strain JBTF-M23T contained Q-8 as the predominant ubiquinone and C16 : 1  ω7c and/or C16 : 1  ω6c, C16 : 0 and C18 : 1  ω7c as the major fatty acids. The major polar lipids of strain JBTF-M23T were phosphatidylethanolamine and one unidentified aminolipid. Distinguished phenotypic properties, along with the phylogenetic and genetic distinctiveness, revealed that strain JBTF-M23T is separated from recognized Pseudoalteromonas species. On the basis of the data presented, strain JBTF-M23Tis considered to represent a novel species of the genus Pseudoalteromonas , for which the name Pseudoalteromonas caenipelagi sp. nov. is proposed. The type strain is JBTF-M23T(=KACC 19900T=NBRC 113647T).


Author(s):  
Selma Vieira ◽  
Katharina J. Huber ◽  
Meina Neumann-Schaal ◽  
Alicia Geppert ◽  
Manja Luckner ◽  
...  

Members of the metabolically diverse order Nitrosomonadales inhabit a wide range of environments. Two strains affiliated with this order were isolated from soils in Germany and characterized by a polyphasic approach. Cells of strains 0125_3T and Swamp67T are Gram-negative rods, non-motile, non-spore-forming, non-capsulated and divide by binary fission. They tested catalase-negative, but positive for cytochrome c-oxidase. Both strains form small white colonies on agar plates and grow aerobically and chemoorganotrophically on SSE/HD 1 : 10 medium, preferably utilizing organic acids and proteinaceous substrates. Strains 0125_3T and Swamp67T are mesophilic and grow optimally without NaCl addition at slightly alkaline conditions. Major fatty acids are C16 : 1  ω7c, C16 : 0 and C14 : 0. The major polar lipids are diphosphatidylglycerol, phosphatidylethanolamine and phosphatidyglycerol. The predominant respiratory quinone is Q-8. The G+C content for 0125_3T and Swamp67T was 67 and 66.1 %, respectively. The 16S rRNA gene analysis indicated that the closest relatives (<91 % sequence similarity) of strain 0125_3T were Nitrosospira multiformis ATCC 25196T, Methyloversatilis universalis FAM5T and Denitratisoma oestradiolicum AcBE2-1T, while Nitrosospira multiformis ATCC 25196T, Nitrosospira tenuis Nv1T and Nitrosospira lacus APG3T were closest to strain Swamp67T. The two novel strains shared 97.4 % 16S rRNA gene sequence similarity with one another and show low average nucleotide identity of their genomes (83.8 %). Based on the phenotypic, chemotaxonomic, genomic and phylogenetic analysis, we propose the two novel species Usitatibacter rugosus sp. nov (type strain 0125_3T=DSM 104443T=LMG 29998T=CECT 9241T) and Usitatibacter palustris sp. nov. (type strain Swamp67T=DSM 104440T=LMG 29997T=CECT 9242T) of the novel genus Usitatibacter gen. nov., within the novel family Usitatibacteraceae fam. nov.


Author(s):  
Hisami Kobayashi ◽  
Yasuhiro Tanizawa ◽  
Mitsuo Sakamoto ◽  
Moriya Ohkuma ◽  
Masanori Tohno

The taxonomic status of the species Clostridium methoxybenzovorans was assessed. The 16S rRNA gene sequence, whole-genome sequence and phenotypic characterizations suggested that the type strain deposited in the American Type Culture Collection ( C. methoxybenzovorans ATCC 700855T) is a member of the species Eubacterium callanderi . Hence, C. methoxybenzovorans ATCC 700855T cannot be used as a reference for taxonomic study. The type strain deposited in the German Collection of Microorganism and Cell Cultures GmbH (DSM 12182T) is no longer listed in its online catalogue. Also, both the 16S rRNA gene and the whole-genome sequences of the original strain SR3T showed high sequence identity with those of Lacrimispora indolis (recently reclassified from Clostridium indolis ) as the most closely related species. Analysis of the two genomes showed average nucleotide identity based on blast and digital DNA–DNA hybridization values of 98.3 and 87.9 %, respectively. Based on these results, C. methoxybenzovorans SR3T was considered to be a member of L. indolis .


2013 ◽  
Vol 63 (Pt_6) ◽  
pp. 2019-2024 ◽  
Author(s):  
Muaz Hijazin ◽  
Osama Sammra ◽  
Hivda Ülbegi-Mohyla ◽  
Samy Nagib ◽  
Jörg Alber ◽  
...  

A polyphasic taxonomic study was performed on two previously unidentified Arcanobacterium -like Gram-positive strains isolated from harbour seals. Comparative 16S rRNA gene sequencing showed that both bacteria belonged to the genus Arcanobacterium and were most closely related to Arcanobacterium haemolyticum CIP 103370T (98.4 % 16S rRNA gene sequence similarity), A. canis P6775T (97.4 %), A. phocae DSM 10002T (97.4 %), A. pluranimalium M430/94/2T (95.7 %) and A. hippocoleae CCUG 44697T (95.5 %). The presence of the major menaquinone MK-9(H4) supported the affiliation of the isolates with the genus Arcanobacterium . The polar lipid profile consisted of major amounts of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, an unidentified phospholipid and two unidentified glycolipids. The major fatty acids were C16 : 0, C18 : 0, C18 : 1ω9c and summed feature 5 (comprising C18 : 2ω6,9c and/or anteiso-C18 : 0). Physiological and biochemical tests clearly distinguished the isolates from other members of the genus Arcanobacterium . Based on the common origin and various physiological properties comparable to those of A. phocae , it is proposed that the isolates are classified as members of a novel species with the name Arcanobacterium phocisimile sp. nov. The type strain is 2698T ( = LMG 27073T  = CCM 8430T).


Sign in / Sign up

Export Citation Format

Share Document