Ochrobactrum pecoris sp. nov., isolated from farm animals

2011 ◽  
Vol 61 (9) ◽  
pp. 2278-2283 ◽  
Author(s):  
Peter Kämpfer ◽  
Bettina Huber ◽  
Hans-Jürgen Busse ◽  
Holger C. Scholz ◽  
Herbert Tomaso ◽  
...  

Two Gram-negative, rod-shaped, non-spore-forming strains, designated 08RB2639T and 08RB2781-1, were isolated from a sheep (Ovis aries) and a domestic boar (Sus scrofa domestica), respectively. By 16S rRNA gene sequencing, the isolates revealed identical sequences and were shown to belong to the Alphaproteobacteria. They exhibited 97.8 % 16S rRNA gene sequence similarity with Ochrobactrum rhizosphaerae PR17T, O. pituitosum CCUG 50899T, O. tritici SCII24T and O. haematophilum CCUG 38531T and 97.4 % sequence similarity with O. cytisi ESC1T, O. anthropi LMG 3331T and O. lupini LUP21T. The recA gene sequences of the two isolates showed only minor differences (99.5 % recA sequence similarity), and strain 08RB2639T exhibited the highest recA sequence similarity with Ochrobactrum intermedium CCUG 24694T (91.3 %). The quinone system was ubiquinone Q-10, with minor amounts of Q-9 and Q-11, the major polyamines were spermidine, putrescine and sym-homospermidine and the major lipids were phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylcholine, with moderate amounts of the Ochrobactrum-specific unidentified aminolipid AL2. The major fatty acids (>20 %) were C18 : 1ω7c and C19 : 0 cyclo ω8c. These traits were in excellent agreement with the assignment of the isolates to the genus Ochrobactrum. DNA–DNA relatedness and physiological and biochemical tests allowed genotypic and phenotypic differentiation from other members of the genus Ochrobactrum. Hence, it is concluded that the isolates represent a novel species, for which the name Ochrobactrum pecoris sp. nov. is proposed (type strain 08RB2639T  = DSM 23868T  = CCUG 60088T  = CCM 7822T).

2004 ◽  
Vol 54 (5) ◽  
pp. 1717-1721 ◽  
Author(s):  
M. Grazia Fortina ◽  
G. Ricci ◽  
D. Mora ◽  
P. L. Manachini

The taxonomic positions of seven atypical Enterococcus strains, isolated from artisanal Italian cheeses, were investigated in a polyphasic study. By using 16S rRNA gene sequencing, DNA–DNA hybridization and intergenic transcribed spacer analysis, as well as by examining the phenotypic properties, the novel isolates were shown to constitute a novel enterococcal species. Their closest relatives are Enterococcus sulfureus and Enterococcus saccharolyticus, having a 16S rRNA gene sequence similarity of 96·7 %. This group of strains can be easily differentiated from the other Enterococcus species by DNA–DNA hybridization and by their phenotypic characteristics: the strains do not grow in 6·5 % NaCl, and they do not produce acid from l-arabinose, melezitose, melibiose, raffinose or ribose. The name Enterococcus italicus sp. nov. is proposed for this species, with strain DSM 15952T (=LMG 22039T) as the type strain.


2010 ◽  
Vol 60 (7) ◽  
pp. 1637-1639 ◽  
Author(s):  
Kazuko Takada ◽  
Kazuhiko Hayashi ◽  
Yutaka Sato ◽  
Masatomo Hirasawa

Four strains (NUM 1903T, NUM 1904, NUM 1912 and NUM 1925) that were obligately anaerobic, pigmented, Gram-negative-staining rods were isolated from the oral cavity of donkeys. These strains were analysed using the Rapid ID 32A, API 20A and API ZYM systems, by DNA–DNA hybridization with other related species and by 16S rRNA gene sequencing. 16S rRNA gene sequence analysis showed that each of the new isolates was a member of the genus Prevotella and related to Prevotella multiformis PPPA21T, showing about 93 % sequence similarity. Based on phylogenetic and phenotypic evidence, it is proposed that the four strains are representatives of a novel species, for which the name Prevotella dentasini sp. nov. is proposed. The type strain is NUM 1903T (=JCM 15908T=DSM 22229T).


2006 ◽  
Vol 56 (9) ◽  
pp. 2199-2202 ◽  
Author(s):  
Hang-Yeon Weon ◽  
Byung-Yong Kim ◽  
Seung-Hee Yoo ◽  
Jong-Shik Kim ◽  
Soon-Wo Kwon ◽  
...  

A bacterial strain, GA2-M3T, isolated from a sea-sand sample in Korea, was subjected to polyphasic taxonomic characterization. Cells of strain GA2-M3T were Gram-negative, non-motile, non-spore-forming and short rod- to ovoid-shaped. Comparative 16S rRNA gene sequencing studies confirmed that the bacterium fell within the radiation of the genus Loktanella. Similarity levels between the 16S rRNA gene sequence of strain GA2-M3T and those of type strains of Loktanella species with validly published names were 93.5–96.1 %; highest sequence similarity was with Loktanella rosea. The G+C content of the genomic DNA of strain GA2-M3T was 60.0 mol% and the predominant ubiquinone was Q-10. Major fatty acids were 18 : 1ω7c, 18 : 0 and 18 : 1ω7c 11-methyl. On the basis of the evidence presented, it is proposed that strain GA2-M3T represents a novel species, for which the name Loktanella koreensis sp. nov. is proposed. The type strain is GA2-M3T (=KACC 11519T=DSM 17925T).


2007 ◽  
Vol 57 (6) ◽  
pp. 1291-1294 ◽  
Author(s):  
A. I. Vela ◽  
N. García ◽  
M. V. Latre ◽  
A. Casamayor ◽  
C. Sánchez-Porro ◽  
...  

Biochemical and molecular genetic studies were performed for five isolates of unknown Gram-positive, catalase-negative, cocci-shaped micro-organisms obtained from clinical samples from pigs. The micro-organisms were tentatively identified as Aerococcus species on the basis of the results from cellular morphological and biochemical tests. 16S rRNA gene sequencing studies confirmed the provisional identification of the isolates as members of the genus Aerococcus, but the micro-organism did not correspond to any recognized species of this genus. The nearest phylogenetic relatives of these unknown cocci isolated from pigs were Aerococcus viridans (95.9 % 16S rRNA gene sequence similarity) and Aerococcus urinaeequi (95.8 %). The unknown bacterium, however, was distinguishable from these two species and from other animal aerococci by using biochemical tests. On the basis of both phenotypic and phylogenetic findings, the isolates represent a novel species of the genus Aerococcus, for which the name Aerococcus suis sp. nov. is proposed. The type strain is 1821/02T (=CECT 7139T=CCUG 52530T).


1999 ◽  
Vol 37 (10) ◽  
pp. 3366-3368 ◽  
Author(s):  
Frédéric Beau ◽  
Claude Bollet ◽  
Thierry Coton ◽  
Eric Garnotel ◽  
Michel Drancourt

Nocardiopsis dassonvillei is an environmental aerobic actinomycete seldom isolated in cutaneous and pulmonary infections. We herein report the first N. dassonvillei blood isolate in a patient hospitalized for cholangitis. Although morphological characteristics and biochemical tests allowed a presumptive identification of this isolate, cell wall fatty acid chromatographic analysis confirmed identification at the genus level, and 16S rRNA gene sequencing achieved definite identification. This study illustrates the usefulness of 16S rRNA gene sequencing as a routine method for the identification of actinomycetes.


2011 ◽  
Vol 61 (12) ◽  
pp. 2956-2961 ◽  
Author(s):  
Mitsufumi Matsumoto ◽  
Daisuke Iwama ◽  
Atsushi Arakaki ◽  
Akira Tanaka ◽  
Tsuyoshi Tanaka ◽  
...  

A Gram-negative, non-motile, non-spore-forming, halophilic rod, designated JPCCMB0017T, was isolated from a marine sediment of the coastal area of Okinawa, Japan. The isolate formed orange–red colonies on marine agar. Bacteriochlorophyll α was absent and sphingoglycolipid 1 and other carotenoids, including astaxanthin, adonixanthin and zeaxanthin, were present. Ubiquinone-10 (Q-10) was the main respiratory quinone and C18 : 1ω7c was the major cellular fatty acid. The G+C content of DNA was 59.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequencing revealed that the isolate was a member of the genus Altererythrobacter in the family Erythrobacteraceae. Strain JPCCMB0017T exhibited 96.8 % 16S rRNA gene sequence similarity with Altererythrobacter marinus H32T. Unlike other members of the genus Altererythrobacter, strain JPCCMB0017T reduced nitrate. On the basis of genotypic and phenotypic data, a novel species is proposed to accommodate this isolate, with the name Altererythrobacter ishigakiensis sp. nov. The type strain is JPCCMB0017T ( = NITE-AP48T = ATCC BAA-2084T = NBRC 107699T).


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 599-603 ◽  
Author(s):  
Seong-Kyu Park ◽  
Min-Soo Kim ◽  
Jin-Woo Bae

A strictly anoxic, Gram-stain-positive, non-motile Blautia -like bacterium, designated strain M25T, was isolated from a human faecal sample. Strain M25T was negative for both catalase and oxidase activity, utilized carbohydrates as fermentable substrates, produced lactate and acetate as the major end products of glucose fermentation in PYG medium, and had a DNA G+C content of 41.6 mol%. Comparative 16S rRNA gene sequencing showed that strain M25T was closely related to Ruminococcus obeum ATCC 29174T (96.40 % 16S rRNA gene sequence similarity) and Blautia glucerasea HFTH-1T (96.17 %) within the family Lachnospiraceae . Straight-chain saturated and monounsaturated cellular fatty acids were also detected, the majority being C14 : 0, C16 : 0 and C16 : 0 dimethyl acetal acids. Based on the phenotypic, genotypic and phylogenetic characteristics presented in this study, strain M25T represents a novel species within the genus Blautia for which the name Blautia faecis sp. nov. is proposed. The type strain is M25T ( = KCTC 5980T = JCM 17205T).


2010 ◽  
Vol 60 (4) ◽  
pp. 928-931 ◽  
Author(s):  
Olga I. Nedashkovskaya ◽  
Marc Vancanneyt ◽  
Seung Bum Kim

A bacterial strain, designated KMM 6177T, was isolated from the sea urchin Strongylocentrotus intermedius and subjected to a polyphasic taxonomic investigation. The bacterium was found to be heterotrophic, aerobic, non-motile by gliding and orange-pigmented. Comparative phylogenetic analysis based on 16S rRNA gene sequencing placed the marine isolate in the genus Bizionia, a member of the family Flavobacteriaceae, with 16S rRNA gene sequence similarity of 94.9–98.6 % with recognized Bizionia species. Strain KMM 6177T grew at 4–39 °C and with 1–8 % NaCl. It produced alkaline phosphatase, catalase and oxidase and hydrolysed aesculin, gelatin, DNA and Tween 20. The predominant fatty acids were iso-C15 : 1, iso-C15 : 0, iso-C15 : 0 3-OH, iso-C17 : 0 3-OH and a summed feature (comprising iso-C15 : 0 2-OH and/or C16 : 1 ω7c). The DNA G+C content was 34.4 mol%. A combination of phylogenetic, genotypic and phenotypic data clearly indicated that strain KMM 6177T represents a novel species in the genus Bizionia, for which the name Bizionia echini sp. nov. is proposed. The type strain is KMM 6177T (=KCTC 22015T=LMG 25220T).


2006 ◽  
Vol 56 (8) ◽  
pp. 1771-1776 ◽  
Author(s):  
Chun-Ju Tai ◽  
Hsiao-Ping Kuo ◽  
Fwu-Ling Lee ◽  
Han-Ken Chen ◽  
Akira Yokota ◽  
...  

Among a large collection of Taiwanese soil isolates, a novel Gram-negative, rod-shaped, non-spore-forming, yellow-pigmented bacterial strain, Soil-3-27T, was isolated from farmland soil in Wu-Feng, Taiwan. The isolate was subjected to a polyphasic study including 16S rRNA gene sequencing, DNA–DNA hybridization, fatty acid analysis and comparative phenotypic characterization. The 16S rRNA gene sequence analysis indicated that the organism belongs to the genus Chryseobacterium. The organism contains menaquinone MK-6 as the predominant isoprenoid quinone and 15 : 0 iso (43 %), 17 : 1 isoω9c (17.5 %) and 17 : 0 iso 3-OH (16.6 %) as the major fatty acids. Phylogenetically, the closest relatives of strain Soil-3-27T are Chryseobacterium daecheongense, Chryseobacterium defluvii and Chryseobacterium taichungense with 96.7–97.2 % sequence similarity. DNA–DNA hybridization showed relatedness values of 8.5–24.2 % with these species. The DNA G+C content is 36.8 mol%. Strain Soil-3-27T is clearly distinguishable from other Chryseobacterium species and represents a novel species, for which the name Chryseobacterium taiwanense sp. nov. is proposed. The type strain is strain Soil-3-27T (=BCRC 17412T=IAM 15317T=LMG 23355T).


2011 ◽  
Vol 61 (12) ◽  
pp. 2962-2966 ◽  
Author(s):  
Alicia Gibello ◽  
Ana I. Vela ◽  
Margarita Martín ◽  
Gerardo Mengs ◽  
Pilar Z. Alonso ◽  
...  

Two unusual, Gram-negative, catalase- and oxidase-positive rods, designated C2T and C5, were isolated from compost samples. Comparative 16S rRNA gene sequencing studies demonstrated that both isolates were members of the genus Pseudomonas and belonged to the Pseudomonas aeruginosa group. Strain C2T was most closely related to Pseudomonas cuatrocienegasensis 1NT and Pseudomonas borbori R-20821T (97.9 and 97.8 % 16S rRNA gene sequence similarity, respectively). However, phylogenetic analysis based on rpoD gene sequences revealed that both isolates could be discriminated from members of the P. aeruginosa group that exhibited >97 % 16S rRNA gene sequence similarity. The DNA G+C content of strain C2T was 61.5 mol%. The major fatty acids of strain C2T were a summed feature (C16 : 1ω7c and/or iso-C15 : 0 2-OH), C18 : 1ω7c/12t/9t, C16 : 0 and C12 : 0, which supported the isolates’ affiliation with the genus Pseudomonas. Moreover, strain C2T could be distinguished from its closest phylogenetic neighbours of the genus Pseudomonas by DNA–DNA hybridization studies and biochemical tests. On the basis of both phenotypic and phylogenetic findings, it is proposed that the isolates be classified as a novel species, with the name Pseudomonas composti sp. nov. The type strain is C2T ( = CECT 7516T = CCUG 59231T).


Sign in / Sign up

Export Citation Format

Share Document