scholarly journals Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere

2007 ◽  
Vol 57 (3) ◽  
pp. 620-624 ◽  
Author(s):  
Samina Mehnaz ◽  
Brian Weselowski ◽  
George Lazarovits

A free-living diazotrophic strain, DS2T, was isolated from corn rhizosphere. Polyphasic taxonomy was performed including morphological characterization, Biolog analysis, and 16S rRNA, cpn60 and nifH gene sequence analyses. 16S rRNA gene sequence analysis indicated that strain DS2T was closely related to the genus Azospirillum (96 % similarity). Chemotaxonomic characteristics (DNA G+C content 67.9 mol%; Q-10 quinone system; major fatty acid 18 : 1ω7c) were also similar to those of the genus Azospirillum. In all the analyses, including phenotypic characterization using Biolog analysis and comparison of cellular fatty acids, this isolate was found to be different from the closely related species Azospirillum lipoferum, Azospirillum oryzae and Azospirillum brasilense. On the basis of these results, a novel species is proposed for this nitrogen-fixing strain. The name Azospirillum canadense sp. nov. is suggested with the type strain DS2T (=NCCB 100108T=LMG 23617T).

2007 ◽  
Vol 57 (6) ◽  
pp. 1351-1354 ◽  
Author(s):  
Fwu-Ling Lee ◽  
Hsiao-Ping Kuo ◽  
Chun-Ju Tai ◽  
Akira Yokota ◽  
Chi-Chu Lo

Among a large collection of Taiwanese soil isolates, a novel Gram-variable, rod-shaped, motile and endospore-forming bacterial strain, designated G-soil-2-3T, was isolated from farmland soil in Wu-Feng, Taiwan. The isolate was subjected to a polyphasic study including 16S rRNA gene sequence analysis, DNA–DNA hybridization experiments, fatty acid analysis and comparative phenotypic characterization. 16S rRNA gene sequence analysis indicated that the organism belongs within the genus Paenibacillus. It contained menaquinone MK-7 as the predominant isoprenoid quinone and anteiso-C15 : 0 (40.5 %), iso-C15 : 0 (13.1 %), iso-C16 : 0 (10.8 %) and anteiso-C17 : 0 (7.3 %) as the major fatty acids. Phylogenetically, the closest relatives of strain G-soil-2-3T were the type strains of Paenibacillus assamensis, Paenibacillus alvei and Paenibacillus apiarius, with 16S rRNA gene sequence similarity of 95.7, 95 and 95.2 %, respectively. DNA–DNA hybridization experiments showed levels of relatedness of 2.8–9.0 % of strain G-soil-2-3T with these strains. The G+C content of the DNA was 44.6 mol%. Strain G-soil-2-3T was clearly distinguishable from P. assamensis, P. alvei and P. apiarius and thus represents a novel species of the genus Paenibacillus, for which the name Paenibacillus taiwanensis sp. nov. is proposed. The type strain is G-soil-2-3T (=BCRC 17411T=IAM 15414T=LMG 23799T=DSM 18679T).


2011 ◽  
Vol 61 (5) ◽  
pp. 1226-1229 ◽  
Author(s):  
Soo-Jin Kim ◽  
Hang-Yeon Weon ◽  
Yi-Seul Kim ◽  
In-Cheol Park ◽  
Jung-A Son ◽  
...  

A Gram-negative bacterium, designated KIS13-15T, was isolated from soil in Korea. Cells were strictly aerobic rods and were motile with 1–3 subpolar flagella. 16S rRNA gene sequence analysis revealed that strain KIS13-15T belonged to the order Xanthomonadales of the class Gammaproteobacteria and was closely related to Nevskia soli GR15-1T (97.9 % 16S rRNA gene sequence similarity) and Nevskia ramosa Soe1T (96.8 %). Strain KIS13-15T exhibited 38 and 29 % DNA–DNA relatedness with N. soli KACC 11703T and N. ramosa DSM 11499T, respectively. The major fatty acids (>10 % of the total) were C18 : 1ω7c (40.6 %) and C16 : 0 (12.4 %). The major isoprenoid quinone was ubiquinone 8. DNA G+C content was 67.3 mol%. The phenotypic characterization combined with 16S rRNA gene sequence analysis and DNA–DNA hybridization clearly classified strain KIS13-15T in a novel species of the genus Nevskia, for which the name Nevskia terrae sp. nov. is proposed. The type strain is KIS13-15T ( = KACC 12736T  = JCM 15425T).


2007 ◽  
Vol 57 (12) ◽  
pp. 2805-2809 ◽  
Author(s):  
Samina Mehnaz ◽  
Brian Weselowski ◽  
George Lazarovits

Two free-living nitrogen-fixing bacterial strains, N6 and N7T, were isolated from corn rhizosphere. A polyphasic taxonomic approach, including morphological characterization, Biolog analysis, DNA–DNA hybridization, and 16S rRNA, cpn60 and nifH gene sequence analysis, was taken to analyse the two strains. 16S rRNA gene sequence analysis indicated that strains N6 and N7T both belonged to the genus Azospirillum and were closely related to Azospirillum oryzae (98.7 and 98.8 % similarity, respectively) and Azospirillum lipoferum (97.5 and 97.6 % similarity, respectively). DNA–DNA hybridization of strains N6 and N7T showed reassociation values of 48 and 37 %, respectively, with A. oryzae and 43 % with A. lipoferum. Sequences of the nifH and cpn60 genes of both strains showed 99 and ~95 % similarity, respectively, with those of A. oryzae. Chemotaxonomic characteristics (Q-10 as quinone system, 18 : 1ω7c as major fatty acid) and G+C content of the DNA (67.6 mol%) were also similar to those of members of the genus Azospirillum. Gene sequences and Biolog and fatty acid analysis showed that strains N6 and N7T differed from the closely related species A. lipoferum and A. oryzae. On the basis of these results, it is proposed that these nitrogen-fixing strains represent a novel species. The name Azospirillum zeae sp. nov. is suggested, with N7T (=NCCB 100147T=LMG 23989T) as the type strain.


2010 ◽  
Vol 60 (4) ◽  
pp. 949-952 ◽  
Author(s):  
Soo-Jin Kim ◽  
Hang-Yeon Weon ◽  
Yi-Seul Kim ◽  
Rangasamy Anandham ◽  
Seung-Hee Yoo ◽  
...  

An ivory-coloured bacterium, designated strain 5YN7-3T, was isolated from a wetland, Yongneup, Korea. Cells of the strain were aerobic, Gram-stain-negative, non-motile and short rods. 16S rRNA gene sequence analysis demonstrated that strain 5YN7-3T belongs to the order Rhizobiales of the class Alphaproteobacteria and is closely related to Kaistia soli 5YN9-8T (97.8 %), Kaistia granuli Ko04T (97.6 %) and Kaistia adipata Chj404T (97.4 %). Strain 5YN7-3T showed DNA–DNA hybridization values of 28, 22 and 35 % with K. granuli Ko04T, K. soli 5YN9-8T and K. adipata Chj404T, respectively. The major fatty acids were C18 : 1 ω7c (51.2 %), C19 : 0 cyclo ω8c (25.0 %), C18 : 0 (12.9 %) and C16 : 0 (10.8 %) (>10 % of total fatty acids). Ubiquinone-10 was the major isoprenoid quinone and the DNA G+C content was 66.5 mol%. The phenotypic characteristics in combination with 16S rRNA gene sequence analysis and DNA–DNA hybridization data clearly define strain 5YN7-3T as a novel species of the genus Kaistia, for which the name Kaistia terrae sp. nov. is proposed. The type strain is 5YN7-3T (=KACC 12910T =DSM 21341T).


2007 ◽  
Vol 57 (2) ◽  
pp. 293-296 ◽  
Author(s):  
Mitsuo Sakamoto ◽  
Maki Kitahara ◽  
Yoshimi Benno

A bacterial strain isolated from human faeces, M-165T, was characterized in terms of its phenotypic and biochemical features, cellular fatty acid profile, menaquinone profile and phylogenetic position (based on 16S rRNA gene sequence analysis). A 16S rRNA gene sequence analysis showed that the isolate was a member of the genus Parabacteroides. Strain M-165T was closely related to Parabacteroides merdae strains, showing 98 % sequence similarity. The strain was obligately anaerobic, non-pigmented, non-spore-forming, non-motile, Gram-negative, rod-shaped and was able to grow on media containing 20 % bile. Although the phenotypic characteristics of the strain M-165T were similar to those of P. merdae, the isolate could be differentiated from P. merdae by means of API 20A tests for l-arabinose and l-rhamnose fermentation. DNA–DNA hybridization experiments revealed the genomic distinctiveness of the novel strain with respect to P. merdae JCM 9497T (⩽60 % DNA–DNA relatedness). The DNA G+C content of the strain is 47.6 mol%. On the basis of these data, strain M-165T represents a novel species of the genus Parabacteroides, for which the name Parabacteroides johnsonii sp. nov. is proposed. The type strain is M-165T (=JCM 13406T=DSM 18315T).


2005 ◽  
Vol 55 (2) ◽  
pp. 763-767 ◽  
Author(s):  
Rosica Valcheva ◽  
Maher Korakli ◽  
Bernard Onno ◽  
Hervé Prévost ◽  
Iskra Ivanova ◽  
...  

Twenty morphologically different strains were chosen from French wheat sourdough isolates. Cells were Gram-positive, non-spore-forming, non-motile rods. The isolates were identified using amplified-fragment length polymorphism, randomly amplified polymorphic DNA and 16S rRNA gene sequence analysis. All isolates were members of the genus Lactobacillus. They were identified as representing Lactobacillus plantarum, Lactobacillus paralimentarius, Lactobacillus sanfranciscensis, Lactobacillus spicheri and Lactobacillus sakei. However, two isolates (LP38T and LP39) could be clearly discriminated from recognized Lactobacillus species on the basis of genotyping methods. 16S rRNA gene sequence similarity and DNA–DNA relatedness data indicate that the two strains belong to a novel Lactobacillus species, for which the name Lactobacillus hammesii is proposed. The type strain is LP38T (=DSM 16381T=CIP 108387T=TMW 1.1236T).


2013 ◽  
Vol 167 (4) ◽  
pp. 393-403 ◽  
Author(s):  
Jung Soh ◽  
Xiaoli Dong ◽  
Sean M. Caffrey ◽  
Gerrit Voordouw ◽  
Christoph W. Sensen

Sign in / Sign up

Export Citation Format

Share Document