scholarly journals Lactobacillus crustorum sp. nov., isolated from two traditional Belgian wheat sourdoughs

2007 ◽  
Vol 57 (7) ◽  
pp. 1461-1467 ◽  
Author(s):  
Ilse Scheirlinck ◽  
Roel Van der Meulen ◽  
Ann Van Schoor ◽  
Geert Huys ◽  
Peter Vandamme ◽  
...  

A polyphasic taxonomic study of the lactic acid bacteria (LAB) population in three traditional Belgian sourdoughs, sampled between 2002 and 2004, revealed a group of isolates that could not be assigned to any recognized LAB species. Initially, sourdough isolates were screened by means of (GTG)5-PCR fingerprinting. Four isolates displaying unique (GTG)5-PCR patterns were further investigated by means of phenylalanyl-tRNA synthase (pheS) gene sequence analysis and represented a bifurcated branch that could not be allocated to any LAB species present in the in-house pheS database. Their phylogenetic affiliation was determined using 16S rRNA gene sequence analysis and showed that the four sourdough isolates belong to the Lactobacillus plantarum group with Lactobacillus mindensis, Lactobacillus farciminis and Lactobacillus nantensis as closest relatives. Further genotypic and phenotypic studies, including whole-cell protein analysis (SDS-PAGE), amplified fragment length polymorphism (AFLP) fingerprinting, DNA–DNA hybridization, DNA G+C content analysis, growth characteristics and biochemical features, demonstrated that the new sourdough isolates represent a novel Lactobacillus species for which the name Lactobacillus crustorum sp. nov. is proposed. The type strain of the new species is LMG 23699T (=CCUG 53174T).

2007 ◽  
Vol 57 (2) ◽  
pp. 223-227 ◽  
Author(s):  
Ilse Scheirlinck ◽  
Roel Van der Meulen ◽  
Ann Van Schoor ◽  
Ilse Cleenwerck ◽  
Geert Huys ◽  
...  

A biodiversity study on lactic acid bacteria (LAB) occurring in traditional Belgian sourdoughs resulted in the isolation of two Lactobacillus isolates, LMG 23583T and LMG 23584, that could not be assigned to any recognized LAB species. The two isolates were initially investigated by means of phenylalanyl-tRNA synthase (pheS) gene sequence analysis and were found to occupy a separate position relative to recognized Lactobacillus species present in the pheS database. Subsequently, their phylogenetic affiliation was determined by 16S rRNA gene sequence analysis, indicating that the two isolates belong to the Lactobacillus buchneri species group with Lactobacillus zymae, Lactobacillus acidifarinae and Lactobacillus spicheri as closest relatives. Whole-cell protein analysis (SDS-PAGE) and amplified fragment length polymorphism fingerprinting of whole genomes confirmed their separate taxonomic status. DNA–DNA hybridization experiments, DNA G+C content, growth characteristics and biochemical features demonstrated that the two isolates represent a novel Lactobacillus species, for which the name Lactobacillus namurensis sp. nov. is proposed. The type strain is LMG 23583T (=CCUG 52843T).


2010 ◽  
Vol 60 (4) ◽  
pp. 949-952 ◽  
Author(s):  
Soo-Jin Kim ◽  
Hang-Yeon Weon ◽  
Yi-Seul Kim ◽  
Rangasamy Anandham ◽  
Seung-Hee Yoo ◽  
...  

An ivory-coloured bacterium, designated strain 5YN7-3T, was isolated from a wetland, Yongneup, Korea. Cells of the strain were aerobic, Gram-stain-negative, non-motile and short rods. 16S rRNA gene sequence analysis demonstrated that strain 5YN7-3T belongs to the order Rhizobiales of the class Alphaproteobacteria and is closely related to Kaistia soli 5YN9-8T (97.8 %), Kaistia granuli Ko04T (97.6 %) and Kaistia adipata Chj404T (97.4 %). Strain 5YN7-3T showed DNA–DNA hybridization values of 28, 22 and 35 % with K. granuli Ko04T, K. soli 5YN9-8T and K. adipata Chj404T, respectively. The major fatty acids were C18 : 1 ω7c (51.2 %), C19 : 0 cyclo ω8c (25.0 %), C18 : 0 (12.9 %) and C16 : 0 (10.8 %) (>10 % of total fatty acids). Ubiquinone-10 was the major isoprenoid quinone and the DNA G+C content was 66.5 mol%. The phenotypic characteristics in combination with 16S rRNA gene sequence analysis and DNA–DNA hybridization data clearly define strain 5YN7-3T as a novel species of the genus Kaistia, for which the name Kaistia terrae sp. nov. is proposed. The type strain is 5YN7-3T (=KACC 12910T =DSM 21341T).


2011 ◽  
Vol 61 (8) ◽  
pp. 1811-1816 ◽  
Author(s):  
V. Venkata Ramana ◽  
Shivali Kapoor ◽  
E. Shobha ◽  
E. V. V. Ramprasad ◽  
Ch. Sasikala ◽  
...  

A novel Gram-negative, motile, bacteriochlorophyll b-containing purple non-sulfur bacterium, strain JA248T, was isolated from phototrophic enrichments of a yellow–green epilithic biofilm sample collected from Gulmarg, India. The genomic DNA G+C content of strain JA248T was 63.8 mol%. A phylogenetic tree based on 16S rRNA gene sequence analysis showed that strain JA248T had highest similarity to members of the genus Blastochloris and was closely related to Blastochloris sulfoviridis DSM 729T (98.5 % sequence similarity) and Blastochloris viridis DSM 133T (98.4 %) of the class Alphaproteobacteria. Strain JA248T was characterized based on polyphasic taxonomy, and distinct phenotypic and molecular differences based on DNA–DNA hybridization (relatedness of <46.5 % with the two species of the genus Blastochloris), multilocus sequence analysis, and phenotypic and chemotaxonomic evidence separated strain JA248T from other species of the genus Blastochloris. Strain JA248T therefore represents a novel species in the genus Blastochloris, for which the name Blastochloris gulmargensis sp. nov. is proposed. The type strain is JA248T ( = JCM 14795T  = DSM 19786T).


2010 ◽  
Vol 60 (1) ◽  
pp. 187-190 ◽  
Author(s):  
Maki Kitahara ◽  
Mitsuo Sakamoto ◽  
Yoshimi Benno

The taxonomic position of strain JCM 2765T isolated from fermented cane molasses in Thailand was reinvestigated. Strain JCM 2765T was originally identified as representing Lactobacillus buchneri on the basis of biochemical and physiological characteristics. In the present study, 16S rRNA gene sequence analysis of strain JCM 2765T demonstrated a low level of similarity with the type strain of L. buchneri (92.5 %) and high levels with those of Lactobacillus collinoides (97.6 %) and Lactobacillus paracollinoides (98.0 %). Ribotyping was applied to investigate the relationships between strain JCM 2765T, L. collinoides and L. paracollinoides. The dendrogram based on ribotyping patterns showed one cluster for six strains of L. paracollinoides, and that strain JCM 2765T and L. collinoides JCM 1123T were each independent. Based on additional phenotypic findings and DNA–DNA hybridization results, strain JCM 2765T is considered to represent a novel species of the genus Lactobacillus, for which the name Lactobacillus similis sp. nov. is proposed. The type strain is JCM 2765T (=LMG 23904T).


2007 ◽  
Vol 57 (6) ◽  
pp. 1351-1354 ◽  
Author(s):  
Fwu-Ling Lee ◽  
Hsiao-Ping Kuo ◽  
Chun-Ju Tai ◽  
Akira Yokota ◽  
Chi-Chu Lo

Among a large collection of Taiwanese soil isolates, a novel Gram-variable, rod-shaped, motile and endospore-forming bacterial strain, designated G-soil-2-3T, was isolated from farmland soil in Wu-Feng, Taiwan. The isolate was subjected to a polyphasic study including 16S rRNA gene sequence analysis, DNA–DNA hybridization experiments, fatty acid analysis and comparative phenotypic characterization. 16S rRNA gene sequence analysis indicated that the organism belongs within the genus Paenibacillus. It contained menaquinone MK-7 as the predominant isoprenoid quinone and anteiso-C15 : 0 (40.5 %), iso-C15 : 0 (13.1 %), iso-C16 : 0 (10.8 %) and anteiso-C17 : 0 (7.3 %) as the major fatty acids. Phylogenetically, the closest relatives of strain G-soil-2-3T were the type strains of Paenibacillus assamensis, Paenibacillus alvei and Paenibacillus apiarius, with 16S rRNA gene sequence similarity of 95.7, 95 and 95.2 %, respectively. DNA–DNA hybridization experiments showed levels of relatedness of 2.8–9.0 % of strain G-soil-2-3T with these strains. The G+C content of the DNA was 44.6 mol%. Strain G-soil-2-3T was clearly distinguishable from P. assamensis, P. alvei and P. apiarius and thus represents a novel species of the genus Paenibacillus, for which the name Paenibacillus taiwanensis sp. nov. is proposed. The type strain is G-soil-2-3T (=BCRC 17411T=IAM 15414T=LMG 23799T=DSM 18679T).


2004 ◽  
Vol 54 (6) ◽  
pp. 2073-2078 ◽  
Author(s):  
David Miñana-Galbis ◽  
Maribel Farfán ◽  
M. Carme Fusté ◽  
J. Gaspar Lorén

Five Aeromonas strains (848TT, 93M, 431E, 849T and 869N), which were isolated from bivalve molluscs and were recognized previously by numerical taxonomy as members of an unknown Aeromonas taxon, were subjected to a polyphasic taxonomic study. DNA–DNA hybridization experiments showed that DNA of strain 848TT was <70 % similar (27–45 %) to that of the type/reference strains of the current Aeromonas hybridization groups (HGs), but 93 % similar to that of strain 93M. The DNA G+C content of the five strains ranged from 59·0 to 59·4 mol%. 16S rRNA gene sequence analysis confirmed that the strains belonged to the genus Aeromonas and showed high similarity to Aeromonas encheleia. Amplified fragment length polymorphism fingerprinting clustered the novel strains in a homogeneous group with low genotypic relatedness to other Aeromonas species. Useful phenotypic features for differentiating the five isolates from other Aeromonas species include their negative reactions in tests for indole production, lysine decarboxylase, gas from glucose and starch hydrolysis. From the results of this study, the name Aeromonas molluscorum sp. nov. is proposed for these strains, with the type strain 848TT (=CECT 5864T=LMG 22214T).


1998 ◽  
Vol 4 (5) ◽  
pp. 255-263 ◽  
Author(s):  
Göran Kronvall ◽  
Margareta Lannér-Sjöberg ◽  
Lars Victor von Stedingk ◽  
Hanna-Stina Hanson ◽  
Bertil Pettersson ◽  
...  

2012 ◽  
Vol 62 (Pt_4) ◽  
pp. 860-863 ◽  
Author(s):  
Chun Tao Gu ◽  
Fang Wang ◽  
Chun Yan Li ◽  
Fei Liu ◽  
Gui Cheng Huo

A Gram-positive bacterial strain, 3.1.1T, was isolated from traditional pickle in Heilongjiang Province, China. The bacterium was characterized by a polyphasic approach, including 16S rRNA gene sequence analysis, pheS gene sequence analysis, rpoA gene sequence analysis, dnaK gene sequence analysis, fatty acid methyl ester analysis, determination of DNA G+C content, DNA–DNA hybridization and an analysis of phenotypic features. Based upon the data obtained in the present study, a novel species, Lactobacillus xiangfangensis sp. nov., is proposed with the type strain 3.1.1T ( = LMG 26013T  = NCIMB 14687T).


2004 ◽  
Vol 54 (3) ◽  
pp. 713-719 ◽  
Author(s):  
Gundlapalli S. N. Reddy ◽  
Genki I. Matsumoto ◽  
Peter Schumann ◽  
Erko Stackebrandt ◽  
Sisinthy Shivaji

Thirty-one bacteria that belonged to the genus Pseudomonas were isolated from cyanobacterial mat samples that were collected from various water bodies in Antarctica. All 31 isolates were psychrophilic; they could be divided into three groups, based on their protein profiles. Representative strains of each of the three groups, namely CMS 35T, CMS 38T and CMS 64T, were studied in detail. Based on 16S rRNA gene sequence analysis, it was established that the strains were related closely to the Pseudomonas fluorescens group. Phenotypic and chemotaxonomic characteristics further confirmed their affiliation to this group. The three strains could also be differentiated from each other and the closely related species Pseudomonas orientalis, Pseudomonas brenneri and Pseudomonas migulae, based on phenotypic and chemotaxonomic characteristics and the level of DNA–DNA hybridization. Therefore, it is proposed that strains CMS 35T (=MTCC 4992T=DSM 15318T), CMS 38T (=MTCC 4993T=DSM 15319T) and CMS 64T (=MTCC 4994T=DSM 15321T) should be assigned to novel species of the genus Pseudomonas as Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov., respectively.


2004 ◽  
Vol 54 (6) ◽  
pp. 2175-2179 ◽  
Author(s):  
M. Vancanneyt ◽  
M. Zamfir ◽  
L. A. Devriese ◽  
K. Lefebvre ◽  
K. Engelbeen ◽  
...  

Four isolates, which were obtained from Belgian, Moroccan and Romanian dairy products, constituted a homogeneous but unidentified taxon after screening with whole-cell protein fingerprinting. Complete 16S rRNA gene sequence analysis classified representative strains in the genus Enterococcus. Highest sequence similarities of 98·6 and 98·0 % were obtained with the species Enterococcus sulfureus and Enterococcus saccharolyticus, respectively. Growth characteristics, biochemical features, tRNA intergenic length polymorphism analysis, DNA–DNA hybridization and DNA G+C contents of selected strains demonstrated that they represent a single, novel Enterococcus species. It differs phenotypically from other enterococci in characteristics commonly considered as typical of this genus: no growth in 6·5 % NaCl or 0·4 % sodium azide, and no acid production from a wide range of carbohydrates. The name Enterococcus saccharominimus sp. nov. is proposed for this novel species; the type strain (LMG 21727T=CCM 7220T) was isolated from contaminated pasteurized cow's milk.


Sign in / Sign up

Export Citation Format

Share Document