scholarly journals Streptomyces emeiensis sp. nov., a novel streptomycete from soil in China

2007 ◽  
Vol 57 (7) ◽  
pp. 1635-1639 ◽  
Author(s):  
Wei Sun ◽  
Ying Huang ◽  
Yue-Qin Zhang ◽  
Zhi-Heng Liu

An actinomycete, strain 4776T, was isolated from soil collected from Emei Mountain in Sichuan Province, China. The taxonomic status of this strain was established using a polyphasic approach. The organism was found to have morphological and chemotaxonomic characteristics typical of streptomycetes. Phylogenetic analysis based on the almost complete 16S rRNA gene sequence indicated that the novel isolate belongs to the genus Streptomyces and consistently falls into a clade together with Streptomyces prasinopilosus DSM 40098T, Streptomyces prasinus JCM 4603T, Streptomyces bambergiensis DSM 40590T, Streptomyces hirsutus DSM 40095T and Streptomyces cyanoalbus DSM 40198T. However, DNA–DNA relatedness and phenotypic data distinguished strain 4776T from these phylogenetically related type strains. It is therefore concluded that strain 4776T (=CGMCC 4.3504T=DSM 41884T) represents a novel species of the genus Streptomyces, for which the name Streptomyces emeienseis sp. nov. is proposed.

2006 ◽  
Vol 56 (10) ◽  
pp. 2309-2312 ◽  
Author(s):  
Haitao Zhang ◽  
Wen Zheng ◽  
Jianyu Huang ◽  
Hongli Luo ◽  
Yan Jin ◽  
...  

A polyphasic study was undertaken to establish the taxonomic status of a Gram-positive, aerobic actinomycete, strain HPA177T, isolated from a marine sponge, Hymeniacidon perleve. The organism formed branching, non-fragmenting vegetative hyphae and produced black pigment. Chemotaxonomic characteristics were consistent with its assignment to the genus Actinoalloteichus. Analysis of the 16S rRNA gene sequence showed that strain HPA177T formed a robust clade with type strains of the genus Actinoalloteichus, but was distinct from them. A number of phenotypic characteristics also readily distinguished strain HPA177T from species of the genus Actinoalloteichus with validly published names. On the basis of the above data, it is proposed that strain HPA177T represents a novel species, Actinoalloteichus hymeniacidonis sp. nov. The type strain of Actinoalloteichus hymeniacidonis is HPA177T (=CGMCC 4.2500T=JCM 13436T).


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4417-4423 ◽  
Author(s):  
Wongsakorn Phongsopitanun ◽  
Takuji Kudo ◽  
Mihoko Mori ◽  
Kazuro Shiomi ◽  
Pattama Pittayakhajonwut ◽  
...  

The novel actinomycete strain PWB-003T, which produced fluostatins B and C antibiotics, was isolated from nearshore sediment collected from Panwa Cape, Phuket Province, Thailand. Data from the present polyphasic study indicated that strain PWB-003T represented a member of the genus Micromonospora. It produced single spores on substrate mycelia and contained meso-diaminopimelic acid in the cell-wall peptidoglycan. Whole-cell hydrolysate contained ribose, xylose, arabinose, mannose and glucose. The predominant menaquinone was MK-10 (H4). Cellular fatty acids comprised C18 : 1ω9c, iso-C16 : 0, anteiso-C17 : 0, iso-C15 : 0 and iso-C17 : 0. On the basis of 16S rRNA gene sequence similarity analysis, the novel strain was closely related to Micromonospora eburnea LK2-10T (99.38 %), Micromonospora chaiyaphumensis MC5-1T (99.16 %), Micromonospora yangpuensis FXJ6.011T (98.97 %), Micromonospora echinaurantiaca DSM 43904T (98.97 %), Micromonospora pallida DSM 43817T (98.97 %), Micromonospora sagamiensis DSM 43912T and Micromonospora auratinigra JCM 12357T (both 98.97 %). The G+C content of the DNA was 74.5 mol%. DNA–DNA relatedness values among strain PWB-003T and related type strains ranged from 11.3 ± 1.3 to 38.8 ± 1.1 %. On the basis of these observations, strain PWB-003T could be distinguished from its closely related type strains and is considered to represent a novel species of the genus Micromonospora, for which the name Micromonospora fluostatini sp. nov. (type strain PWB-003T = JCM 30529T = PCU 341T = TISTR 2345T) is proposed.


2010 ◽  
Vol 60 (12) ◽  
pp. 2903-2907 ◽  
Author(s):  
Shiou-Huei Chao ◽  
Masae Sasamoto ◽  
Yuko Kudo ◽  
Junji Fujimoto ◽  
Ying-Chieh Tsai ◽  
...  

Three Gram-positive-staining strains isolated from fermented stinky tofu brine were rod-shaped, non-motile, asporogenous, facultatively anaerobic, heterofermentative and did not exhibit catalase activity. Comparative analyses of 16S rRNA, rpoA and pheS gene sequences demonstrated that the novel strains were members of the genus Lactobacillus. On the basis of 16S rRNA gene sequence similarity, the type strains of Lactobacillus collinoides (98.6 %), Lactobacillus paracollinoides (98.6 %) and Lactobacillus similis (99.6 %) were the closest neighbours. However, DNA–DNA reassociation values with these strains were less than 10 %. The phenotypic and genotypic features demonstrated that these isolates represent a novel species of the genus Lactobacillus, for which the name Lactobacillus odoratitofui sp. nov. is proposed. The type strain is YIT 11304T (=JCM 15043T =BCRC 17810T =DSM 19909T).


2011 ◽  
Vol 61 (7) ◽  
pp. 1667-1670 ◽  
Author(s):  
M. Tseng ◽  
H. C. Liao ◽  
W. P. Chiang ◽  
G. F. Yuan

A novel actinomycete, designated strain 06182M-1T, was isolated from a mangrove soil sample collected from Chiayi County in Taiwan. Phylogenetic analysis based on 16S rRNA gene sequences revealed levels of similarity of 97.0–98.8 % to the type strains of recognized species of the genus Isoptericola. Chemotaxonomic data also supported the placement of strain 06182M-1T within the genus Isoptericola. However, the low levels of DNA–DNA relatedness between the novel strain and the type strains of recognized species of the genus Isoptericola, in combination with differential phenotypic data, demonstrate that strain 06182M-1T represents a novel species of the genus Isoptericola, for which the name Isoptericola chiayiensis sp. nov. is proposed. The type strain is 06182M-1T ( = BCRC 16888T  = KCTC 19740T).


2007 ◽  
Vol 57 (8) ◽  
pp. 1872-1875 ◽  
Author(s):  
Malka Halpern ◽  
Yigal Senderovich ◽  
Sagi Snir

A Gram-negative, rod-shaped bacterial strain, designated K19414T, was isolated from a chironomid (Diptera; Chironomidae) egg mass which was sampled from Kishon River in northern Israel. Phylogenetic analysis based on the 16S rRNA gene sequence positioned the novel strain among the genus Rheinheimera, with closest similarity to Rheinheimera pacifica KMM 1406T. The levels of similarity to type strains of Rheinheimera species were lower than 96.5 %. Isolate K19414T is aerobic, motile by means of a single polar flagellum, catalase-negative and oxidase-positive; growth was observed at salinities of 0–2 % NaCl and the temperature for growth ranged from 4 to 40 °C. The major cellular fatty acids are 16 : 0 (14.8 %) and 16 : 1ω7c and/or 15 : 0 iso 2-OH (25.76 %). The DNA G+C content is 49.9 mol%. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain K19414T (=LMG 23818T =DSM 18694T) was classified in the genus Rheinheimera as the type strain of a novel species, for which the name Rheinheimera chironomi sp. nov. is proposed.


2007 ◽  
Vol 57 (3) ◽  
pp. 513-519 ◽  
Author(s):  
Ingrid Groth ◽  
Geok Yuan Annie Tan ◽  
Juan M. González ◽  
Leonila Laiz ◽  
Marc René Carlsohn ◽  
...  

The taxonomic status of two actinomycetes isolated from the wall of a hypogean Roman catacomb was established based on a polyphasic investigation. The organisms were found to have chemical and morphological markers typical of members of the genus Amycolatopsis. They also shared a range of chemical, molecular and phenotypic markers which served to separate them from representatives of recognized Amycolatopsis species. The new isolates formed a branch in the Amycolatopsis 16S rRNA gene sequence tree with Amycolatopsis minnesotensis NRRL B-24435T, but this association was not supported by a particularly high bootstrap value or by the product of the maximum-parsimony tree-making algorithm. The organisms were distinguished readily from closely related Amycolatopsis species based on a combination of phenotypic properties and from all Amycolatopsis strains by their characteristic menaquinone profiles, in which tetra-hydrogenated menaquinones with 11 isoprene units predominated. The combined genotypic and phenotypic data indicate that the isolates merit recognition as representing a novel species of the genus Amycolatopsis. The name proposed for this novel species is Amycolatopsis nigrescens sp. nov., with type strain CSC17Ta-90T (=HKI 0330T=DSM 44992T=NRRL B-24473T).


2012 ◽  
Vol 62 (Pt_3) ◽  
pp. 489-494 ◽  
Author(s):  
Shiou-Huei Chao ◽  
Yuko Kudo ◽  
Ying-Chieh Tsai ◽  
Koichi Watanabe

Three Gram-stain-positive strains were isolated from fermented mustard and were rod-shaped, non-motile, asporogenous, facultatively anaerobic, homofermentative and did not exhibit catalase activity. Comparative analyses of 16S rRNA, pheS and rpoA gene sequences demonstrated that the novel strains were members of the genus Lactobacillus. On the basis of 16S rRNA gene sequence analysis, the type strains of Lactobacillus crustorum (98.7 % similarity), Lactobacillus farciminis (98.9 %) and Lactobacillus mindensis (97.9 %) were the closest neighbours. However, DNA–DNA reassociation values with these strains were less than 50 %. Phenotypic and genotypic features demonstrated that these isolates represent a novel species of the genus Lactobacillus, for which the name Lactobacillus futsaii sp. nov. is proposed; the type strain is YM 0097T ( = JCM 17355T = BCRC 80278T).


2004 ◽  
Vol 54 (1) ◽  
pp. 115-117 ◽  
Author(s):  
Koji Suzuki ◽  
Wataru Funahashi ◽  
Masahiro Koyanagi ◽  
Hiroshi Yamashita

Three novel strains isolated from brewery environments are described. These strains were Gram-positive, facultatively anaerobic, heterofermentative rods that did not exhibit catalase activity. Phylogenetic analysis based on 16S rRNA gene sequence similarity showed that these strains belong to the genus Lactobacillus and are most closely related to Lactobacillus collinoides (approximately 99 % similarity). The novel strains could be differentiated from L. collinoides on the basis of DNA–DNA relatedness, differences in beer-spoilage ability and the inability to utilize d-fructose. These isolates represent a novel species, for which the name Lactobacillus paracollinoides sp. nov. is proposed. The type strain is LA2T (=DSM 15502T=JCM 11969T).


2005 ◽  
Vol 55 (5) ◽  
pp. 2057-2061 ◽  
Author(s):  
Danielle Saintpierre-Bonaccio ◽  
Hamid Amir ◽  
René Pineau ◽  
G. Y. Annie Tan ◽  
Michael Goodfellow

The taxonomic position of an actinomycete isolated from a brown hypermagnesian ultramafic soil was examined using a polyphasic approach. The organism, which was designated SBHS Strp1T, was found to have chemical and morphological properties typical of Amycolatopsis strains. It was most closely associated with Amycolatopsis kentuckyensis, Amycolatopsis lexingtonensis, Amycolatopsis rifamycinica, Amycolatopsis pretoriensis and Amycolatopsis tolypomycina on the basis of 16S rRNA gene sequence data, and showed a unique pattern of phenotypic properties that distinguished it from the type strains of these taxa. The combined genotypic and phenotypic data show that the organism merits description as a novel species of Amycolatopsis. The name proposed for the novel species is Amycolatopsis plumensis sp. nov.; the type strain is SBHS Strp1T (=DSM 44776T=NRRL B-24324T).


2007 ◽  
Vol 57 (3) ◽  
pp. 558-561 ◽  
Author(s):  
A. F. Yassin ◽  
Chiu Chung Young ◽  
Wei-An Lai ◽  
H. Hupfer ◽  
A. B. Arun ◽  
...  

The taxonomic status of a bacterium designated strain IMMIB SR-4T isolated from an oil-contaminated soil sample was characterized by using a polyphasic approach. Chemotaxonomic investigations revealed the presence of cell-wall chemotype IV, short-chain mycolic acids that co-migrated with those extracted from members of the genus Williamsia and that on pyrolysis GC produce C16 : 0 and C18 : 0 fatty acids, and dihydrogenated menaquinone with nine isoprene units as the predominant menaquinone. The generic assignment was confirmed by 16S rRNA gene sequence analysis. Comparative analysis of the 16S rRNA gene sequence showed that strain IMMIB SR-4T formed a distinct phyletic line within the genus Williamsia, displaying sequence similarities of 95.5–98.1 % with the type strains of recognized Williamsia species. Strain IMMIB SR-4T was distinguished from the type strains of recognized species of the genus Williamsia based on a set of phenotypic features. The genotypic and phenotypic data indicated that strain IMMIB SR-4T represents a novel species of the genus Williamsia, for which the name Williamsia serinedens sp. nov. is proposed. The type strain is IMMIB SR-4T (=DSM 45037T=CCUG 53151T).


Sign in / Sign up

Export Citation Format

Share Document