scholarly journals Lysobacter defluvii sp. nov., isolated from municipal solid waste

2007 ◽  
Vol 57 (5) ◽  
pp. 1131-1136 ◽  
Author(s):  
A. F. Yassin ◽  
Wen-Ming Chen ◽  
H. Hupfer ◽  
C. Siering ◽  
R. M. Kroppenstedt ◽  
...  

A bacterial isolate obtained from soil from a municipal landfill site in India was characterized using a polyphasic taxonomic approach. The colonies of the isolate were found to be yellow and highly mucoid. Comparative analysis of the 16S rRNA gene sequence showed that this isolate constitutes a distinct phyletic line within the genus Lysobacter, displaying >3 % sequence divergence with respect to recognized Lysobacter species. The generic assignment was confirmed by chemotaxonomic data, which revealed the presence of a fatty acid profile characteristic of members of the genus Lysobacter and consisting of saturated, unsaturated, straight-chain and branched-chain fatty acids as well as iso-C11 : 0 3-OH as hydroxylated fatty acid, and the presence of an ubiquinone with eight isoprene units (Q-8) as the predominant respiratory quinone. The genotypic and phenotypic data show that strain IMMIB APB-9T merits classification as representing a novel species of the genus Lysobacter, for which the name Lysobacter defluvii sp. nov. is proposed. The type strain is IMMIB APB-9T (=CCUG 53152T=DSM 18482T).

2007 ◽  
Vol 57 (8) ◽  
pp. 1823-1827 ◽  
Author(s):  
Chiu Chung Young ◽  
Mann-Jing Ho ◽  
A. B. Arun ◽  
Wen-Ming Chen ◽  
Wei-An Lai ◽  
...  

A bacterial isolate from a sample of oil-contaminated soil was characterized using a polyphasic taxonomic approach. Comparative analysis of the 16S rRNA gene sequence showed that this isolate constituted a distinct phyletic line within the genus Pseudoxanthomonas, displaying >3.7 % sequence divergence with respect to recognised Pseudoxanthomonas species. The genus assignment was confirmed by a chemotaxonomic analysis, which revealed the presence of a fatty acid profile characteristic of members of the genus Pseudoxanthomonas (straight-chain saturated, unsaturated and branched-chain fatty acids of the iso/anteiso type and 3-hydroxylated fatty acids) and the presence of a ubiquinone with eight isoprene units (Q-8) as the predominant respiratory quinone. The novel isolate was distinguishable from other members of the genus Pseudoxanthomonas on the basis of a combination of phenotypic properties. The genotypic and phenotypic data show that the strain represents a novel species of the genus Pseudoxanthomonas, for which the name Pseudoxanthomonas spadix sp. nov. is proposed. The type strain is IMMIB AFH-5T (=DSM 18855T=CCUG 53828T).


2010 ◽  
Vol 60 (9) ◽  
pp. 1993-1998 ◽  
Author(s):  
A. F. Yassin ◽  
H. Hupfer ◽  
C. Siering ◽  
H.-J. Busse

A yellow-pigmented, Gram-reaction-negative bacterium isolated from a human clinical source was investigated using a polyphasic approach in order to clarify its taxonomic status. Comparative 16S rRNA gene sequence analysis showed that the new isolate constituted a distinct phyletic line within the genus Chryseobacterium, displaying >2.8 % sequence divergence with recognized species of this genus. The generic assignment was confirmed by chemotaxonomic data which revealed a fatty acid profile consisting of straight-chain saturated, monounsaturated and branched-chain fatty acids of iso-/anteiso-types as well as 3-hydroxylated fatty acids; a menaquinone with six isoprene units (MK-6) as the predominant respiratory quinone and sym-homospermidine as the predominant polyamine. The novel isolate could be distinguished from other members of the genus Chryseobacterium by a set of distinct biochemical properties. On the basis of phenotypic and phylogenetic evidence, it is proposed that the new isolate represents a novel species of the genus Chryseobacterium for which the name Chryseobacterium treverense sp. nov. is proposed. The type strain is IMMIB L-1519T (=DSM 22251T=CCUG 57657T).


2007 ◽  
Vol 57 (11) ◽  
pp. 2613-2617 ◽  
Author(s):  
C. C. Young ◽  
M.-J. Ho ◽  
A. B. Arun ◽  
W.-M. Chen ◽  
W.-A. Lai ◽  
...  

The taxonomic status of a yellow-coloured bacterial isolate from an oil-contaminated soil sample was determined using a polyphasic taxonomic approach. Comparative analysis of 16S rRNA gene sequences showed that the novel isolate formed a distinct phyletic line within the genus Sphingobium. The generic assignment was confirmed by chemotaxonomic data, which revealed: a fatty acid profile that is characteristic of the genus Sphingobium consisting of straight-chain saturated and unsaturated as well as 2-OH fatty acids; a ubiquinone with ten isoprene units (Q-10) as the predominant respiratory quinone; a polar lipid pattern consisting of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylcholine and sphingoglycolipid, and spermidine as the major polyamine component. Genotypic and phenotypic data show that the new isolate merits classification as a representative of a novel species of the genus Sphingobium, for which the name Sphingobium olei sp. nov. is proposed. The type strain is IMMIB HF-1T (=DSM 18999T=CCUG 54329T).


2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 134-140 ◽  
Author(s):  
Wen-Ming Chen ◽  
Shwu-Harn Yang ◽  
Chiu-Chung Young ◽  
Shih-Yi Sheu

A bacterial strain, designated NSW-5T, was isolated from a water sample taken from Niao-Song Wetland Park in Taiwan and characterized using a polyphasic taxonomic approach. Cells of strain NSW-5T were strictly aerobic, Gram-stain-negative, non-motile and polymorphic, being straight, vibrioid, curved and spiral-shaped rods surrounded by a thick capsule and forming light pink-coloured colonies. Some rings consisting of several cells were present. Growth occurred at 10–40 °C (optimum, 25 °C), with 0–3.0 % NaCl (optimum, 0 %) and at pH 6.0–8.0 (optimum, pH 7.0). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain NSW-5T belonged to the genus Arcicella with sequence similarities of 98.6, 98.0 and 97.3 % with Arcicella aquatica NO-502T, Arcicella rosea TW5T and Arcicella aurantiaca TNR-18T, respectively. The predominant cellular fatty acids were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c; 20.8 %), C16 : 0 (14.6 %), iso-C15 : 0 (13.8 %), C16 : 1ω5c (12.5 %) and C18 : 0 (11.4 %), and the only respiratory quinone was MK-7. The polar lipid profile consisted of phosphatidylethanolamine and several uncharacterized glycolipids, aminolipids, phospholipids and aminophospholipids. The DNA G+C content of strain NSW-5T was 44.1 mol%. The DNA–DNA relatedness of strain NSW-5T with respect to recognized species of the genus Arcicella was less than 70 %. On the basis of phylogenetic inference and phenotypic data, strain NSW-5T should be classified as a representative of a novel species, for which the name Arcicella rigui sp. nov. is proposed. The type strain is NSW-5T ( = KCTC 23307T = BCRC 80260T). Emended descriptions of the genus Arcicella and of Arcicella aquatica , Arcicella rosea and Arcicella aurantiaca are also proposed.


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 2817-2823 ◽  
Author(s):  
Yang Liu ◽  
Su Yao ◽  
Yong-Jae Lee ◽  
Yanhua Cao ◽  
Lei Zhai ◽  
...  

Two yellow bacterial strains, designated NBD5T and NBD8, isolated from Noni (Morinda citrifolia L.) branch were investigated using a polyphasic taxonomic approach. Cells were Gram-stain-negative, aerobic, non-spore-forming, non-motile and short rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences suggested that the strains were members of a novel species of the genus Sphingomonas, the seven closest neighbours being Sphingomonas oligoaromativorans SY-6T (96.9  % similarity), Sphingomonas polyaromaticivorans B2-7T (95.8  %), Sphingomonas yantingensis 1007T (94.9  %), Sphingomonas sanguinis IFO 13937T (94.7  %), Sphingomonas ginsenosidimutans Gsoil 1429T (94.6  %), Sphingomonas wittichii RW1T (94.6  %) and Sphingomonas formosensis CC-Nfb-2T (94.5  %). Strains NBD5T and NBD8 had sphingoglycolipid, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylcholine as the major polar lipids, ubiquinone 10 as the predominant respiratory quinone, and sym-homospermidine as the major polyamine. Strains NBD5T and NBD8 were clearly distinguished from reference type strains based on phylogenetic analysis, DNA–DNA hybridization, fatty acid composition data analysis, and comparison of a range of physiological and biochemical characteristics. It is evident from the genotypic and phenotypic data that strains NBD5T and NBD8 represent a novel species of the genus Sphingomonas, for which the name Sphingomonas morindae sp. nov. is proposed. The type strain is NBD5T ( = DSM 29151T = KCTC 42183T = CICC 10879T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 4196-4201 ◽  
Author(s):  
Yang Liu ◽  
Lei Zhai ◽  
Su Yao ◽  
Yanhua Cao ◽  
Yu Cao ◽  
...  

A Gram-stain-positive bacterial strain, designated as NR2T, isolated from noni (Morinda citrifolia L.) branch was investigated using a polyphasic taxonomic approach. The cells were small coccoid to ovoid, non-spore-forming and motile. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain was a representative of a member of the genus Brachybacterium, to which the most closely related neighbours were Brachybacterium squillarum M-6-3T (97.90 % similarity), Brachybacterium faecium DSM 4810T (97.50 %), Brachybacterium sacelli LMG 20345T (97.41 %), Brachybacterium phenoliresistens phenol-AT (97.36 %), Brachybacterium nesterenkovii DSM 9573T (97.36 %) and Brachybacterium rhamnosum LMG 19848T (97.32 %). The polar lipid profile of strain NR2T consisted of diphosphatidylglycerol, phosphatidylglycerol, unknown phospholipids and unknown glycolipids. The predominant respiratory quinone was MK-8, with MK-9 and MK-7 as minor components. The major fatty acids were anteiso-C15 : 0 and iso-C15 : 0. Strain NR2T was clearly distinguishable from the type strains of related species on the basis of phylogenetic analysis, DNA–DNA hybridization, fatty acid composition data analysis and a range of physiological and comparison of biochemical characteristics. It is evident from the genotypic and phenotypic data that strain NR2T represents a novel species of the genus Brachybacterium, for which the name Brachybacterium hainanense sp. nov. is proposed. The type strain is NR2T ( = DSM 29535T = CICC 10874T).


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1457-1463 ◽  
Author(s):  
Wen-Ming Chen ◽  
Shwu-Harn Yang ◽  
Chiu-Chung Young ◽  
Shih-Yi Sheu

A bacterial strain designated Ruye-90T was isolated from a freshwater tilapiine cichlid fish culture pond in Taiwan and characterized using a polyphasic taxonomic approach. Strain Ruye-90T was Gram-negative, aerobic, yellow-coloured, rod-shaped, and motile by means of a single polar flagellum. Growth occurred at 4–30 °C (optimum, 20–30 °C), at pH 7.0–9.0 (optimum, pH 8.0–9.0) and with 0–2 % NaCl (optimum, 0 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain Ruye-90T belonged to the genus Rheinheimera and its most closely related neighbour was Rheinheimera tangshanensis JA3-B52T with sequence similarity of 97.5 %. The major fatty acids were summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c, 41.3 %), C16 : 0 (19.3 %), C18 : 1ω7c (8.4 %) and C12 : 0 3-OH (7.0 %). The major respiratory quinone was Q-8. The DNA G+C content of the genomic DNA was 49.0 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylserine, aminolipid and two uncharacterized phospholipids. The DNA–DNA relatedness of strain Ruye-90T with respect to recognized members of the genus Rheinheimera was less than 70 %. On the basis of the genotypic, chemotaxonomic and phenotypic data, strain Ruye-90T represents a novel species in the genus Rheinheimera , for which the name Rheinheimera tilapiae sp. nov. is proposed. The type strain is Ruye-90T ( = LMG 26339T = BCRC 80263T = KCTC 23315T).


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4533-4538 ◽  
Author(s):  
Yang Liu ◽  
Lei Zhai ◽  
Ronghuan Wang ◽  
Ran Zhao ◽  
Xin Zhang ◽  
...  

Four Gram-stain-positive bacterial strains, designated 6R2T, 6R18, 3T2 and 3T10, isolated from seeds of hybrid maize (Zea mays L., Jingke 968) were investigated using a polyphasic taxonomic approach. Cells were aerobic, motile, spore-forming and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolates may represent a novel species of the genus Paenibacillus, the four closest neighbours being Paenibacillus lautus NRRL NRS-666T (97.1 % similarity), Paenibacillus glucanolyticus DSM 5162T (97.0 %), Paenibacillus lactis MB 1871T (97.0 %) and Paenibacillus chibensis JCM 9905T (96.8 %). The DNA G+C content of strain 6R2T was 51.8 mol%. Its polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The predominant respiratory quinone was menaquinone 7 (MK-7) and the major fatty acids were anteiso-C15 : 0 and iso-C14 : 0. Strains 6R2T, 6R18, 3T2 and 3T10 were clearly distinguished from the above type strains using phylogenetic analysis, DNA–DNA hybridization, and a range of physiological and biochemical characteristics. It is evident from the genotypic and phenotypic data that strains 6R2T, 6R18, 3T2 and 3T10 represent a novel species of the genus Paenibacillus, for which the name Paenibacillus zeae sp. nov. is proposed. The type strain is 6R2T ( = KCTC 33674T = CICC 23860T).


2010 ◽  
Vol 60 (1) ◽  
pp. 149-153 ◽  
Author(s):  
A. F. Yassin ◽  
C. Spröer ◽  
C. Siering ◽  
H.-P. Klenk

The taxonomic position of an actinomycete, strain IMMIB L-889T, isolated from the sputum of a 64-year-old man, was determined using a polyphasic taxonomic approach. The strain had chemical and morphological properties that were consistent with its classification in the genus Actinomadura. It formed a distinct phyletic line in the 16S rRNA gene tree of Actinomadura and was most closely related to the type strain of Actinomadura hallensis (98.4 % sequence similarity), but could be readily distinguished from the latter species using DNA–DNA relatedness and phenotypic data. The combined genotypic and phenotypic data indicate that strain IMMIB L-889T represents a novel species of the genus Actinomadura, for which the name Actinomadura sputi sp. nov. is proposed. The type strain is IMMIB L-889T (=DSM 45233T=CCUG 56587T).


2014 ◽  
Vol 64 (Pt_8) ◽  
pp. 2770-2774 ◽  
Author(s):  
Miho Watanabe ◽  
Hisaya Kojima ◽  
Manabu Fukui

A novel thermophilic, facultatively anaerobic bacterium, strain skLN1T, was isolated from the sediment of a freshwater lake in Japan. Cells of strain skLN1T were rod-shaped and Gram-stain-variable. A KOH lysis test suggested that the cell wall of the isolate has a Gram-positive structure. For aerobic growth, the optimum pH was pH 7.25–7.50 and the optimum temperature was 50–52 °C. The G+C content of the genomic DNA was 50.8 mol%. Nitrate was reduced to nitrite. Alicyclic fatty acids were not detected, and branched-chain fatty acids were major components in the cellular fatty acid profile. MK-7 was the predominant respiratory quinone. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolated strain was related most closely to Alicyclobacillus consociatus CCUG 53762T (95 % similarity). This analysis also showed that the monophyly of the genus Alicyclobacillus had been lost. On the basis of phylogenetic and phenotypic characterization, Effusibacillus lacus gen. nov., sp. nov. is proposed. The type strain of Effusibacillus lacus is skLN1T ( = NBRC 109614T = DSM 27172T). It is also proposed that Alicyclobacillus pohliae and Alicyclobacillus consociatus should be reclassified to the genus Effusibacillus as Effusibacillus pohliae comb. nov. and Effusibacillus consociatus comb. nov., respectively.


Sign in / Sign up

Export Citation Format

Share Document