scholarly journals Brachybacterium hainanense sp. nov., isolated from noni (Morinda citrifolia L.) branch

2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 4196-4201 ◽  
Author(s):  
Yang Liu ◽  
Lei Zhai ◽  
Su Yao ◽  
Yanhua Cao ◽  
Yu Cao ◽  
...  

A Gram-stain-positive bacterial strain, designated as NR2T, isolated from noni (Morinda citrifolia L.) branch was investigated using a polyphasic taxonomic approach. The cells were small coccoid to ovoid, non-spore-forming and motile. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain was a representative of a member of the genus Brachybacterium, to which the most closely related neighbours were Brachybacterium squillarum M-6-3T (97.90 % similarity), Brachybacterium faecium DSM 4810T (97.50 %), Brachybacterium sacelli LMG 20345T (97.41 %), Brachybacterium phenoliresistens phenol-AT (97.36 %), Brachybacterium nesterenkovii DSM 9573T (97.36 %) and Brachybacterium rhamnosum LMG 19848T (97.32 %). The polar lipid profile of strain NR2T consisted of diphosphatidylglycerol, phosphatidylglycerol, unknown phospholipids and unknown glycolipids. The predominant respiratory quinone was MK-8, with MK-9 and MK-7 as minor components. The major fatty acids were anteiso-C15 : 0 and iso-C15 : 0. Strain NR2T was clearly distinguishable from the type strains of related species on the basis of phylogenetic analysis, DNA–DNA hybridization, fatty acid composition data analysis and a range of physiological and comparison of biochemical characteristics. It is evident from the genotypic and phenotypic data that strain NR2T represents a novel species of the genus Brachybacterium, for which the name Brachybacterium hainanense sp. nov. is proposed. The type strain is NR2T ( = DSM 29535T = CICC 10874T).

2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 2817-2823 ◽  
Author(s):  
Yang Liu ◽  
Su Yao ◽  
Yong-Jae Lee ◽  
Yanhua Cao ◽  
Lei Zhai ◽  
...  

Two yellow bacterial strains, designated NBD5T and NBD8, isolated from Noni (Morinda citrifolia L.) branch were investigated using a polyphasic taxonomic approach. Cells were Gram-stain-negative, aerobic, non-spore-forming, non-motile and short rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences suggested that the strains were members of a novel species of the genus Sphingomonas, the seven closest neighbours being Sphingomonas oligoaromativorans SY-6T (96.9  % similarity), Sphingomonas polyaromaticivorans B2-7T (95.8  %), Sphingomonas yantingensis 1007T (94.9  %), Sphingomonas sanguinis IFO 13937T (94.7  %), Sphingomonas ginsenosidimutans Gsoil 1429T (94.6  %), Sphingomonas wittichii RW1T (94.6  %) and Sphingomonas formosensis CC-Nfb-2T (94.5  %). Strains NBD5T and NBD8 had sphingoglycolipid, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylcholine as the major polar lipids, ubiquinone 10 as the predominant respiratory quinone, and sym-homospermidine as the major polyamine. Strains NBD5T and NBD8 were clearly distinguished from reference type strains based on phylogenetic analysis, DNA–DNA hybridization, fatty acid composition data analysis, and comparison of a range of physiological and biochemical characteristics. It is evident from the genotypic and phenotypic data that strains NBD5T and NBD8 represent a novel species of the genus Sphingomonas, for which the name Sphingomonas morindae sp. nov. is proposed. The type strain is NBD5T ( = DSM 29151T = KCTC 42183T = CICC 10879T).


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4533-4538 ◽  
Author(s):  
Yang Liu ◽  
Lei Zhai ◽  
Ronghuan Wang ◽  
Ran Zhao ◽  
Xin Zhang ◽  
...  

Four Gram-stain-positive bacterial strains, designated 6R2T, 6R18, 3T2 and 3T10, isolated from seeds of hybrid maize (Zea mays L., Jingke 968) were investigated using a polyphasic taxonomic approach. Cells were aerobic, motile, spore-forming and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolates may represent a novel species of the genus Paenibacillus, the four closest neighbours being Paenibacillus lautus NRRL NRS-666T (97.1 % similarity), Paenibacillus glucanolyticus DSM 5162T (97.0 %), Paenibacillus lactis MB 1871T (97.0 %) and Paenibacillus chibensis JCM 9905T (96.8 %). The DNA G+C content of strain 6R2T was 51.8 mol%. Its polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The predominant respiratory quinone was menaquinone 7 (MK-7) and the major fatty acids were anteiso-C15 : 0 and iso-C14 : 0. Strains 6R2T, 6R18, 3T2 and 3T10 were clearly distinguished from the above type strains using phylogenetic analysis, DNA–DNA hybridization, and a range of physiological and biochemical characteristics. It is evident from the genotypic and phenotypic data that strains 6R2T, 6R18, 3T2 and 3T10 represent a novel species of the genus Paenibacillus, for which the name Paenibacillus zeae sp. nov. is proposed. The type strain is 6R2T ( = KCTC 33674T = CICC 23860T).


2011 ◽  
Vol 61 (2) ◽  
pp. 255-258 ◽  
Author(s):  
Xin-Yan Yu ◽  
Yong-Feng Li ◽  
Jin-Wei Zheng ◽  
Yi Li ◽  
Lian Li ◽  
...  

A bacterial strain, designated BF-3T, was isolated from phenol-contaminated soil and investigated using a polyphasic taxonomic approach. Cells were Gram-reaction-negative, non-sporulating, non-motile, short rods. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain BF-3T formed a monophyletic branch at the periphery of the evolutionary radiation occupied by the genus Comamonas; it showed highest sequence similarities to Comamonas aquatica LMG 2370T (96.8 %), C. nitrativorans DSM 13191T (96.4 %), C. odontotermitis LMG 23579T (96.4 %), C. kerstersii LMG 3475T (96.3 %), C. koreensis KCTC 12005T (96.1 %) and C. terrigena LMG 1253T (96.0 %). The major cellular fatty acids were C16 : 0, C18 : 1/C18 : 1 ω7c, C17 : 0 cyclo and summed feature 3 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH). Based on the phylogenetic analysis, DNA–DNA hybridization, whole-cell fatty acid composition and biochemical characteristics, strain BF-3T was clearly distinct from type strains of other recognized species of the genus Comamonas and, as such, represents a novel species of the genus Comamonas, for which the name Comamonas zonglianii sp. nov. is proposed. The type strain is BF-3T (=CCTCC AB 209170T =DSM 22523T).


2013 ◽  
Vol 63 (Pt_9) ◽  
pp. 3352-3357 ◽  
Author(s):  
Gang Wu ◽  
Yang Liu ◽  
Qing Li ◽  
Huijing Du ◽  
Jing You ◽  
...  

A yellow-coloured bacterial strain, designated HB2T, isolated from stratum water was investigated using a polyphasic taxonomic approach. Cells were Gram-stain-negative, aerobic, non-spore-forming, non-flagellated and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain was a member of the genus Luteimonas , its three closest neighbours being Luteimonas aquatica BCRC 17731T (97.5 % similarity), Luteimonas marina JCM 12488T (97.3 %) and Luteimonas aestuarii DSM 19680T (96.9 %). Strain HB2T could clearly be distinguished from these type strains based on phylogenetic analysis, DNA–DNA hybridization, fatty acid composition and a range of physiological and biochemical characteristics. It is evident from the genotypic and phenotypic data that strain HB2T represents a novel species of the genus Luteimonas , for which the name Luteimonas huabeiensis sp. nov. is proposed. The type strain is HB2T ( = DSM 26429T = CICC 11005sT).


2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 134-140 ◽  
Author(s):  
Wen-Ming Chen ◽  
Shwu-Harn Yang ◽  
Chiu-Chung Young ◽  
Shih-Yi Sheu

A bacterial strain, designated NSW-5T, was isolated from a water sample taken from Niao-Song Wetland Park in Taiwan and characterized using a polyphasic taxonomic approach. Cells of strain NSW-5T were strictly aerobic, Gram-stain-negative, non-motile and polymorphic, being straight, vibrioid, curved and spiral-shaped rods surrounded by a thick capsule and forming light pink-coloured colonies. Some rings consisting of several cells were present. Growth occurred at 10–40 °C (optimum, 25 °C), with 0–3.0 % NaCl (optimum, 0 %) and at pH 6.0–8.0 (optimum, pH 7.0). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain NSW-5T belonged to the genus Arcicella with sequence similarities of 98.6, 98.0 and 97.3 % with Arcicella aquatica NO-502T, Arcicella rosea TW5T and Arcicella aurantiaca TNR-18T, respectively. The predominant cellular fatty acids were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c; 20.8 %), C16 : 0 (14.6 %), iso-C15 : 0 (13.8 %), C16 : 1ω5c (12.5 %) and C18 : 0 (11.4 %), and the only respiratory quinone was MK-7. The polar lipid profile consisted of phosphatidylethanolamine and several uncharacterized glycolipids, aminolipids, phospholipids and aminophospholipids. The DNA G+C content of strain NSW-5T was 44.1 mol%. The DNA–DNA relatedness of strain NSW-5T with respect to recognized species of the genus Arcicella was less than 70 %. On the basis of phylogenetic inference and phenotypic data, strain NSW-5T should be classified as a representative of a novel species, for which the name Arcicella rigui sp. nov. is proposed. The type strain is NSW-5T ( = KCTC 23307T = BCRC 80260T). Emended descriptions of the genus Arcicella and of Arcicella aquatica , Arcicella rosea and Arcicella aurantiaca are also proposed.


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3281-3285 ◽  
Author(s):  
Guizhen Li ◽  
Qiliang Lai ◽  
Yaping Du ◽  
Xiupian Liu ◽  
Fengqin Sun ◽  
...  

A novel strain, 22II-S11-z3T, was isolated from the deep-sea sediment of the Atlantic Ocean. The bacterium was aerobic, Gram-staining-negative, oxidase-positive and catalase-negative, oval- to rod-shaped, and non-motile. Growth was observed at salinities of 1–9 % NaCl and temperatures of 10–45 °C. The isolate could hydrolyse aesculin and Tweens 20, 40 and 80, but not gelatin. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 22II-S11-z3T belonged to the genus Aestuariivita, with highest sequence similarity to Aestuariivita boseongensis KCTC 42052T (97.5 %). The average nucleotide identity and digital DNA–DNA hybridization values between strain 22II-S11-z3T and A. boseongensis KCTC 42052T were 71.5 % and 20.0 ± 2.3 %, respectively. The G+C content of the chromosomal DNA was 65.5 mol%. The principal fatty acids (>5 %) were summed feature 8 (C18 : 1ω7c/ω6c) (35.2 %), C19 : 0 cyclo ω8c (20.9 %), C16 : 0 (11.8 %), 11-methyl C18 : 1ω7c (11.4 %) and C12 : 1 3-OH (9.4 %). The respiratory quinone was determined to be Q-10. Diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, nine unidentified phospholipids, one unidentified aminolipid and two unidentified lipids were present. The combined genotypic and phenotypic data show that strain 22II-S11-z3T represents a novel species of the genus Aestuariivita, for which the name Aestuariivita atlantica sp. nov. is proposed, with the type strain 22II-S11-z3T ( = KCTC 42276T = MCCC 1A09432T).


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1457-1463 ◽  
Author(s):  
Wen-Ming Chen ◽  
Shwu-Harn Yang ◽  
Chiu-Chung Young ◽  
Shih-Yi Sheu

A bacterial strain designated Ruye-90T was isolated from a freshwater tilapiine cichlid fish culture pond in Taiwan and characterized using a polyphasic taxonomic approach. Strain Ruye-90T was Gram-negative, aerobic, yellow-coloured, rod-shaped, and motile by means of a single polar flagellum. Growth occurred at 4–30 °C (optimum, 20–30 °C), at pH 7.0–9.0 (optimum, pH 8.0–9.0) and with 0–2 % NaCl (optimum, 0 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain Ruye-90T belonged to the genus Rheinheimera and its most closely related neighbour was Rheinheimera tangshanensis JA3-B52T with sequence similarity of 97.5 %. The major fatty acids were summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c, 41.3 %), C16 : 0 (19.3 %), C18 : 1ω7c (8.4 %) and C12 : 0 3-OH (7.0 %). The major respiratory quinone was Q-8. The DNA G+C content of the genomic DNA was 49.0 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylserine, aminolipid and two uncharacterized phospholipids. The DNA–DNA relatedness of strain Ruye-90T with respect to recognized members of the genus Rheinheimera was less than 70 %. On the basis of the genotypic, chemotaxonomic and phenotypic data, strain Ruye-90T represents a novel species in the genus Rheinheimera , for which the name Rheinheimera tilapiae sp. nov. is proposed. The type strain is Ruye-90T ( = LMG 26339T = BCRC 80263T = KCTC 23315T).


2011 ◽  
Vol 61 (6) ◽  
pp. 1402-1407 ◽  
Author(s):  
Shih-Yi Sheu ◽  
Tzu-Fang Chiu ◽  
Chiu-Chung Young ◽  
A. B. Arun ◽  
Wen-Ming Chen

A bacterial strain, designated an-8T, was isolated from a freshwater shrimp culture pond in Taiwan and characterized using a polyphasic taxonomic approach. Cells of strain an-8T were Gram-reaction-negative, aerobic, rod-shaped and non-motile, formed yellow-pigmented colonies and grew at 15–30 °C (optimum 25 °C), pH 7–8 (optimum pH 8.0) and in 0–1 % (w/v) NaCl (optimum 0 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain an-8T belonged to the genus Flavobacterium and its most closely related neighbours were Flavobacterium terrigena DS-20T and Flavobacterium terrae R2A1-13T with sequence similarities of 95.1 and 94.9 %, respectively. Strain an-8T contained iso-C15 : 0, summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c), iso-C16 : 0 3-OH, iso-C15 : 0 3-OH, iso-C17 : 0 3-OH and iso-C15 : 1 as the major fatty acids. The major isoprenoid quinone was MK-6. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidyldimethylethanolamine, phosphatidylserine and several unidentified polar lipids. The G+C content of the genomic DNA was 39.8 mol%. On the basis of the phylogenetic and phenotypic data, strain an-8T represents a novel species of the genus Flavobacterium, for which the name Flavobacterium macrobrachii sp. nov. is proposed. The type strain is an-8T ( = BCRC 17965T  = LMG 25203T).


2007 ◽  
Vol 57 (11) ◽  
pp. 2613-2617 ◽  
Author(s):  
C. C. Young ◽  
M.-J. Ho ◽  
A. B. Arun ◽  
W.-M. Chen ◽  
W.-A. Lai ◽  
...  

The taxonomic status of a yellow-coloured bacterial isolate from an oil-contaminated soil sample was determined using a polyphasic taxonomic approach. Comparative analysis of 16S rRNA gene sequences showed that the novel isolate formed a distinct phyletic line within the genus Sphingobium. The generic assignment was confirmed by chemotaxonomic data, which revealed: a fatty acid profile that is characteristic of the genus Sphingobium consisting of straight-chain saturated and unsaturated as well as 2-OH fatty acids; a ubiquinone with ten isoprene units (Q-10) as the predominant respiratory quinone; a polar lipid pattern consisting of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylcholine and sphingoglycolipid, and spermidine as the major polyamine component. Genotypic and phenotypic data show that the new isolate merits classification as a representative of a novel species of the genus Sphingobium, for which the name Sphingobium olei sp. nov. is proposed. The type strain is IMMIB HF-1T (=DSM 18999T=CCUG 54329T).


2015 ◽  
Vol 65 (Pt_7) ◽  
pp. 2310-2314 ◽  
Author(s):  
Juan Du ◽  
Qiliang Lai ◽  
Yang Liu ◽  
Chunming Dong ◽  
Yanrong Xie ◽  
...  

A Gram-reaction-negative, facultatively anaerobic and rod-shaped bacterium, designated strain JN14CK-3T, was isolated from surface sediment of the Jiulong River of China and was characterized phenotypically and phylogenetically. Phylogenetic analysis of the 16S rRNA gene sequences indicated that strain JN14CK-3T belonged to the genus Draconibacterium, with the highest sequence similarity (98.3 %) to Draconibacterium orientale FH5T. By contrast, strain JN14CK-3T shared low 16S rRNA gene sequence similarities ( < 91.0 %) with other type strains. The sole respiratory quinone was MK-7.The polar lipids were phosphatidylethanolamine and several unidentified phospholipids and lipids. The major fatty acids were iso-C15:0, iso-C16:0, anteiso-C15:0, C17:0 2-OH, iso-C16:0 3-OH and iso-C17:0 3-OH. The G+C content of the genomic DNA was 40.9 mol%. The digital DNA–DNA hybridization value and average nucleotide identity (ANI) between strain JN14CK-3T and D. orientale FH5T were 34.2 ± 2.5 % and 87.1 %, respectively. The combined genotypic and phenotypic data showed that strain JN14CK-3T represents a novel species of the genus Draconibacterium, for which the name Draconibacterium sediminis sp. nov. is proposed, with the type strain JN14CK-3T ( = MCCC 1A00734T = KCTC 42152T).


Sign in / Sign up

Export Citation Format

Share Document