scholarly journals Qipengyuania sediminis gen. nov., sp. nov., a member of the family Erythrobacteraceae isolated from subterrestrial sediment

2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3658-3665 ◽  
Author(s):  
Xiao-Min Feng ◽  
Yong-Xin Mo ◽  
Lu Han ◽  
Yuichi Nogi ◽  
You-Hai Zhu ◽  
...  

A Gram-reaction-negative, non-motile, facultatively aerobic bacterium, designated strain M1T, was isolated from a subterrestrial sediment sample of Qiangtang Basin in Qinghai-Tibetan plateau, China. The strain formed rough yellow colonies on R2A plates. Cells were oval or short rod-shaped, catalase-positive and oxidase-negative. Phylogenetic analyses based on 16S rRNA gene sequences indicated that the isolate belonged to the family Erythrobacteraceae and showed 96.2–96.4 % 16S rRNA gene sequence similarities to its closest relatives. Chemotaxonomic analysis revealed ubiquinone-10 (Q10) as the dominant respiratory quinone of strain M1T and C17 : 1ω6c (44.2 %) and C18 : 1ω7c (13.7 %) as the major fatty acids. The major polar lipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, sphingoglycolipid, three unidentified glycolipids, one unidentified phosphoglycolipid and one unidentified lipid. The DNA G+C content of strain M1T was 73.7 mol%. On the basis of phenotypic, phylogenetic and genotypic data presented in this study, strain M1T represents a novel species of a new genus in the family Erythrobacteraceae, for which the name Qipengyuania sediminis gen. nov., sp. nov. is proposed. The type strain of the type species is M1T ( = CGMCC 1.12928T = JCM 30182T).

2007 ◽  
Vol 57 (1) ◽  
pp. 141-145 ◽  
Author(s):  
Zhe-Xue Quan ◽  
Kwang Kyu Kim ◽  
Myung-Kyum Kim ◽  
Long Jin ◽  
Sung-Taik Lee

A Gram-negative, non-spore-forming, yellow-pigmented bacterium, strain N4T, was isolated from a nickel-complexed cyanide-degrading bioreactor and subjected to a polyphasic taxonomic study. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain N4T is affiliated to the genus Chryseobacterium of the family Flavobacteriaceae. The levels of 16S rRNA gene sequence similarity between strain N4T and the type strains of all known Chryseobacterium species were 93.2–95.8 %, suggesting that strain N4T represents a novel species within the genus Chryseobacterium. The strain contained iso-C15 : 0 and summed feature 4 as the major fatty acids and menaquinone MK-6 as the predominant respiratory quinone. The G+C content of the genomic DNA was 38.2 mol%. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain N4T represents a novel species of the genus Chryseobacterium, for which the name Chryseobacterium caeni sp. nov. is proposed. The type strain is N4T (=KCTC 12506T=CCBAU 10201T=DSM 17710T).


2010 ◽  
Vol 60 (9) ◽  
pp. 2023-2026 ◽  
Author(s):  
Shu-Juan Cao ◽  
Chun-Ping Deng ◽  
Bao-Zhen Li ◽  
Xiu-Qin Dong ◽  
Hong-Li Yuan

A Gram-negative, yellow-pigmented bacterium, designated strain R2A-16T, was isolated from sediment of Rupa Lake in Nepal and analysed using a polyphasic taxonomic approach. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain R2A-16T is affiliated to the genus Cloacibacterium of the family Flavobacteriaceae; 16S rRNA gene sequence similarity between strain R2A-16T and Cloacibacterium normanense CCUG 46293T was 98.07 %. The isolate contained iso-C15 : 0 (35.6 %) as the major fatty acid and menaquinone MK-6 as the predominant respiratory quinone. The G+C content of the genomic DNA was 33.3 mol%. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain R2A-16T represents a novel species of the genus Cloacibacterium, for which the name Cloacibacterium rupense sp. nov. is proposed; the type strain is R2A-16T (=CGMCC 1.7656T =NBRC 104931T).


2012 ◽  
Vol 62 (Pt_9) ◽  
pp. 2218-2223 ◽  
Author(s):  
Yong Yu ◽  
Hui-Rong Li ◽  
Yin-Xin Zeng ◽  
Kun Sun ◽  
Bo Chen

A yellow-coloured, rod-shaped, Gram-reaction- and Gram-staining-negative, non-motile and aerobic bacterium, designated strain ZS1-8T, was isolated from a sample of sandy intertidal sediment collected from the Antarctic coast. Flexirubin-type pigments were absent. In phylogenetic analyses based on 16S rRNA gene sequences, strain ZS1-8T formed a distinct phyletic line and the results indicated that the novel strain should be placed in a new genus within the family Flavobacteriaceae . In pairwise comparisons between strain ZS1-8T and recognized species, the levels of 16S rRNA gene sequence similarity were all <93.3 %. The strain required Ca2+ and K+ ions as well as NaCl for growth. Optimal growth was observed at pH 7.5–8.0, 17–19 °C and with 2–3 % (w/v) NaCl. The major fatty acids were iso-C15 : 1 G, iso-C15 : 0, summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), an unknown acid with an equivalent chain-length of 13.565 and iso-C17 : 0 3-OH. The major respiratory quinone was MK-6. The predominant polar lipid was phosphatidylethanolamine. The genomic DNA G+C content was 43.9 mol%. Based on the phylogenetic, phenotypic and chemotaxonomic data, strain ZS1-8T represents a novel species in a new genus in the family Flavobacteriaceae for which the name Pricia antarctica gen. nov., sp. nov. is proposed. The type strain of the type species is ZS1-8T ( = JCM 17291T = DSM 23421T).


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2640-2645 ◽  
Author(s):  
Kyunghwa Baek ◽  
Che Ok Jeon

A Gram-stain-negative, strictly aerobic, non-pigmented, motile bacterium with a single polar flagellum, designated H29T, was isolated from coastal sediment of Jeju Island, South Korea. Cells were non-spore-forming rods showing catalase- and oxidase-positive reactions. Growth of strain H29T was observed at 10–40 °C (optimum, 20–25 °C) and pH 6.0–9.0 (optimum, pH 7.0–8.0), and in the presence of 1–4 % (w/v) NaCl (optimum, 2–3 %). Strain H29T contained C16 : 0, iso-C15 : 0 3-OH and summed feature 3 (comprising C16 : 1ω7c/C16 : 1ω6c) as the major fatty acids and ubiquinone-8 (Q-8) as the sole isoprenoid quinone. Phosphatidylethanolamine and phosphatidylglycerol were identified as the major polar lipids. The G+C content of the genomic DNA was 46.5 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain H29T formed a phyletic lineage with Rheinheimera hassiensis E48T within the genus Rheinheimera of the family Chromatiaceae. Strain H29T was most closely related to Rheinheimera pacifica KMM 1406T, Rheinheimera muenzenbergensis E49T, Rheinheimera hassiensis E48T and Rheinheimera baltica OSBAC1T with 97.8 %, 97.6 %, 97.4 % and 97.2 % 16S rRNA gene sequence similarities, respectively. However, DNA–DNA hybridization values of strain H29T with type strains of these species were lower than 70 %. On the basis of the phenotypic, chemotaxonomic and molecular properties, strain H29T represents a novel species of the genus Rheinheimera, for which the name Rheinheimera aestuarii sp. nov. is proposed. The type strain is H29T ( = KACC 18251T = JCM 30404T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 4100-4106 ◽  
Author(s):  
Shih-Yao Lin ◽  
Asif Hameed ◽  
Chiu-Chung Young ◽  
You-Cheng Liu ◽  
Yi-Han Hsu ◽  
...  

A Gram-stain-negative, aerobic, rod-shaped, non-flagellated marine bacterium, designated strain LS-861T, was isolated from seawater of the South China Sea (Taiwan). Strain LS-861T grew optimally at pH 7.0 and 30 °C in the presence of 3 % (w/v) NaCl. The novel strain shared highest 16S rRNA gene sequence similarity (91.5 % each) with ‘Nitratireductor shengliensis’ CGMCC 1.12519 and Hoeflea halophila JG120-1T and lower sequence similarity ( < 91.5 %) with other species. Phylogenetic analyses based on 16S rRNA gene sequences revealed a distinct taxonomic position attained by strain LS-861T within the clade that accommodated members of the family Phyllobacteriaceae. The major fatty acids were C16 : 0, iso-C17 : 1ω10c, C18 : 0 3-OH and C18 : 1ω7c/C18 : 1ω6c. The polar lipid profile was relatively simple as compared with other representatives of Phyllobacteriaceae, by having major amounts of diphosphatidylglycerol, phosphatidylglycerol and an unidentified glycolipid, and moderate amounts of three unidentified phospholipids and an unidentified aminolipid. The DNA G+C content was 61.2 mol%. The predominant quinone system was ubiquinone-10 (Q-10). The data in general and phylogenetic and polar lipid data in particular clearly distinguish the novel strain from related species at the genus level. Thus, strain LS-861T is suggested to represent a novel species of a new genus of the family Phyllobacteriaceae, for which the name Thalassocola ureilytica gen. nov., sp. nov. is proposed. The type strain of Thalassocola ureilytica is LS-861T ( = BCRC 80818T = JCM 30682T).


2021 ◽  
Author(s):  
Dawoon Chung ◽  
Jaoon Young Hwan Kim ◽  
Kyung Woo Kim ◽  
Yong Min Kwon

Abstract A gram-negative, orange-pigmented, non-flagellated, gliding, rod-shaped, and aerobic bacterium, designated strain F202Z8T, was isolated from a rusty iron plate found in the intertidal region of Taean, South Korea. Notably, this strain synthesized silver nanoparticles (AgNPs), and 17 putative genes responsible for the synthesis of AgNPs were found in its genome. The complete genome sequence of strain F202Z8T is 4,723,614 bp, with 43.26% G + C content. Phylogenetic analysis based on 16S rRNA gene sequence revealed that strain F202Z8T forms a distinct lineage with closely related genera Maribacter, Pelagihabitans, Pseudozobellia, Zobellia, Pricia, and Costertonia belonging to the family Flavobacteriaceae. The 16S rRNA sequence similarity was < 94.5%. The digital DNA–DNA hybridization and average nucleotide identity values calculated from the whole genome-sequence comparison between strain F202Z8T and other members of the family Flavobacteriaceae were in the ranges of 12.7–16.9% and 70.3–74.4%, respectively. Growth was observed at 15–33°C (optimally at 30°C), at pH 6.5–7.5 (optimally at pH 7.0), and with the addition of 2.5–4.5% (w/v) NaCl to the media (optimally at 4.0%). The predominant cellular fatty acids were iso-C15: 0, iso-C15 :1 G, and iso-C17 :0 3-OH; the major respiratory quinone was MK-6. Polar lipids included phosphatidylethanolamine, five unidentified lipids, and two unidentified aminolipids. Our polyphasic taxonomic results suggested that this strain represents a novel species of a novel genus in the family Flavobacteriaceae, for which the name Aggregatimonas sangjinii gen. nov., sp. nov. is proposed. The type strain of Aggregatimonas sangjinii is F202Z8T (= KCCM 43411T = LMG 31494T).


Author(s):  
Shan Jiang ◽  
Feng-Bai Lian ◽  
You-Yang Sun ◽  
Xiao-Kui Zhang ◽  
Zong-Jun Du

A Gram-stain-negative, rod-shaped and facultatively aerobic bacterial strain, designated F7430T, was isolated from coastal sediment collected at Jingzi Wharf in Weihai, PR China. Cells of strain F7430T were 0.3–0.4 µm wide, 2.0–2.6 µm long, non-flagellated, non-motile and formed pale-beige colonies. Growth was observed at 4–40 °C (optimum, 30 °C), pH 6.0–9.0 (optimum, pH 7.5–8.0) and at NaCl concentrations of 1.0–10.0 % (w/v; optimum, 1.0 %). The sole respiratory quinone of strain F7430T was ubiquinone 8 and the predominant cellular fatty acids were summed feature 8 (C18 : 1  ω7c / C18 : 1  ω6c; 60.7 %), summed feature 3 (C16 : 1  ω7c/C16 : 1  ω6c; 30.2 %) and C15 : 0 iso (13.9 %). The polar lipids of strain F7430T consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, one unidentified phospholipid and three unidentified lipids. Results of 16S rRNA gene sequences analyses indicated that this strain belonged to the family Halieaceae and had high sequence similarities to Parahaliea aestuarii JCM 51547T (95.3 %) and Halioglobus pacificus DSM 27932T (95.2 %) followed by 92.9–95.0 % sequence similarities to other type species within the aforementioned family. The rpoB gene sequences analyses indicated that the novel strain had the highest sequence similarities to Parahaliea aestuarii JCM 51547T (82.2 %) and Parahaliea mediterranea DSM 21924T (82.2 %) followed by 75.2–80.5 % sequence similarities to other type species within this family. Phylogenetic analyses showed that strain F7430T constituted a monophyletic branch clearly separated from the other genera of family Halieaceae . Whole-genome sequencing of strain F7430T revealed a 3.3 Mbp genome size with a DNA G+C content of 52.6 mol%. The genome encoded diverse metabolic pathways including the Entner–Doudoroff pathway, assimilatory sulphate reduction and biosynthesis of dTDP-l-rhamnose. Based on results from the current polyphasic study, strain F7430T is proposed to represent a novel species of a new genus within the family Halieaceae , for which the name Sediminihaliea albiluteola gen. nov., sp. nov. is proposed. The type strain of the type species is F7430T (=KCTC 72873T=MCCC 1H00420T).


2012 ◽  
Vol 62 (Pt_9) ◽  
pp. 2163-2168 ◽  
Author(s):  
Yong-Taek Jung ◽  
Ji-Hoon Kim ◽  
So-Jung Kang ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-staining-negative, non-flagellated, non-gliding and pleomorphic bacterial strain, designated DPG-25T, was isolated from seawater in a seaweed farm in the South Sea in Korea and its taxonomic position was investigated by using a polyphasic approach. Strain DPG-25T grew optimally at 25 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. Flexirubin-type pigments were not produced. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DPG-25T formed a cluster with the type strains of Actibacter sediminis , Aestuariicola saemankumensis and Lutimonas vermicola . Strain DPG-25T exhibited 16S rRNA gene sequence similarity values of 95.3, 93.1 and 93.6 % to the type strains of Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola , respectively. Strain DPG-25T contained MK-6 as the predominant menaquinone and iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. The major polar lipids detected in strain DPG-25T were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content was 39.9 mol%. Differential phenotypic properties and the phylogenetic distinctiveness of strain DPG-25T demonstrated that this strain is distinguishable from Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola . On the basis of the data presented here, strain DPG-25T represents a novel species in a novel genus of the family Flavobacteriaceae , for which the name Namhaeicola litoreus gen. nov., sp. nov. is proposed. The type strain of Namhaeicola litoreus is DPG-25T ( = KCTC 23702T  = CCUG 61485T).


2020 ◽  
Vol 70 (3) ◽  
pp. 1785-1792 ◽  
Author(s):  
Jae-Chan Lee ◽  
Kyung-Sook Whang

A Gram-stain-positive actinobacterial strain, designated YJ01T, was isolated from a spinach farming field soil at Shinan in Korea. Strain YJ01T was aerobic, non-motile, non-spore-forming cocci with diameters of 1.5–1.9 µm, and was able to grow at 10–37 °C (optimum, 28–30 °C), at pH 4.5–9.0 (optimum, pH 7.0–8.0) and at salinities of 0–7.5 % (w/v) NaCl (optimum, 1.0 % NaCl). Sequence similarities of the 16S rRNA gene of strain YJ01T with closely related relatives were in the range 96.2–92.8 %, and the results of phylogenomic analysis indicated that strain YJ01T was clearly separated from species of genera in the family Intrasporangiaceae showing average nucleotide identity values of 84.2–83.4 %. The predominant isoprenoid quinone was identified as MK-8(H4) and the major fatty acids were iso-C15 : 0, iso-C16:1 h, iso-C16 : 0 and anteiso-C17 : 1ω9c. The diagnostic diamino acid of the peptidoglycan was ornithine, and the interpeptide bridge was l-Orn–Gly2–d-Glu. The major polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylserine, an unidentified phosphatidylglycolipid, two unidentified phosphoaminolipids and an unidentified phosphoglycoaminolipid. The G+C content of the genome was 70.1 mol%. On the basis of phenotypic and chemotaxonomic properties and phylogenetic and phylogenomic analyses using 16S rRNA gene sequences and whole-genome sequences, strain YJ01T is considered to represent a novel species of a new genus in the family Intrasporangiaceae , for which the name Segeticoccus rhizosphaerae gen. nov. sp. nov. is proposed. The type strain of Segeticoccus rhizosphaerae is YJ01T (=KACC 19547T=NBRC 113173T).


Author(s):  
Xiao-Xian Huang ◽  
Jia Shang ◽  
Lian Xu ◽  
Rui Yang ◽  
Ji-Quan Sun

A Gram-stain-negative, non-motile, rod-shaped bacterial strain, named SJ-16T, was isolated from desert soil collected in Inner Mongolia, northern PR China. Strain SJ-16T grew at pH 6.0–11.0 (optimum, pH 8.0–9.0), 4–40 °C (optimum, 30–35 °C) and in the presence of 0–8 % (w/v) NaCl (optimum, 0–2 %). The strain was negative for catalase and positive for oxidase. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain SJ-16T clustered with Luteimonas chenhongjianii 100111T and Luteimonas terrae THG-MD21T, and had 98.8, 98.6, 98.3 and <97.9 % of 16S rRNA gene sequence similarity to strains L. chenhongjianii 100111T, L. terrae THG-MD21T, L. aestuarii B9T and all other type strains of the genus Luteimonas , respectively. The major cellular fatty acids were iso-C15 : 0, iso-C16 : 0, summed feature 3 (C16 : 1  ω7c and/or C16 : 1  ω6c) and summed feature 9 (C16 : 0 10-methyl and/or iso-C17 : 1  ω9c). Diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine were the major polar lipids, and ubiquinone-8 was the only respiratory quinone. The genomic DNA G+C content was 69.3 mol%. The digital DNA–DNA hybridization and average nucleotide identity values of strain SJ-16T to L. chenhongjianii 100111T, L. terrae THG-MD21T, L. rhizosphaerae 4-12T and L. aestuarii B9T were 36.9, 37.5, 24.0 and 21.1 %, and 80.9, 80.6, 80.7 and 76.3 %, respectively. Based on phenotypic, physiological and phylogenetic results, strain SJ-16T represents a novel species of the genus Luteimonas , for which the name Luteimonas deserti is proposed. The type strain is SJ-16T (=CGMCC 1.17694T=KCTC 82207T).


Sign in / Sign up

Export Citation Format

Share Document