scholarly journals Correction of the type strain of Aeromonas punctata (Zimmermann 1890) Snieszko 1957 and of A. punctata subsp. punctata from ATCC 15468T to NCMB 74T (=NCIMB 74T= ATCC 23309T)

2020 ◽  
Vol 70 (3) ◽  
pp. 2155-2157 ◽  
Author(s):  
Barry Holmes ◽  
J. Jim Farmer III

Under Rule 23a (Note 4) of the Bacteriological Code we ask the Judicial Commission to issue an opinion that will correct two errors that were made on the original 1980 Approved Lists of Bacterial Names. We request that the type strain designations for Aeromonas punctata and Aeromonas punctata subsp. punctata be corrected from ATCC 15468T to NCMB 74T. We also ask that the opinion state the ‘correct’ or best way to write the author citations for several other Aeromonas names in order to avoid future instability in nomenclature when the citations are given.

2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1819-1824 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Chul-Hyung Kang ◽  
Song-Gun Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, aerobic and pleomorphic bacterium, designated BS-W13T, was isolated from a tidal flat on the South Sea, South Korea, and its taxonomic position was investigated using a polyphasic approach. Strain BS-W13T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 1.0–2.0 % (w/v) NaCl. Neighbour-joining and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain BS-W13T clustered with the type strain of Seohaeicola saemankumensis , showing the highest sequence similarity (95.96 %) to this strain. Strain BS-W13T exhibited 16S rRNA gene sequence similarity values of 95.95, 95.91, 95.72 and 95.68 % to the type strains of Sulfitobacter donghicola , Sulfitobacter porphyrae , Sulfitobacter mediterraneus and Roseobacter litoralis , respectively. Strain BS-W13T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The polar lipid profile of strain BS-W13T, containing phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid as major components, was distinguishable from those of some phylogenetically related taxa. The DNA G+C content of strain BS-W13T was 58.1 mol%. The phylogenetic data and differential chemotaxonomic and other phenotypic properties revealed that strain BS-W13T constitutes a novel genus and species within family Rhodobacteraceae of the class Alphaproteobacteria , for which the name Pseudoseohaeicola caenipelagi gen. nov., sp. nov. is proposed. The type strain is BS-W13T ( = KCTC 42349T = CECT 8724T).


2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 593-597 ◽  
Author(s):  
Susan F. Koval ◽  
Henry N. Williams ◽  
O. Colin Stine

The taxonomic status of saltwater Bdellovibrio -like prokaryotic predators has been revised to assign species to Halobacteriovorax gen. nov. A reclassification of Bacteriovorax marinus as Halobacteriovorax marinus comb. nov. (type strain ATCC BAA-682T = DSM 15412T) and Bacteriovorax litoralis as Halobacteriovorax litoralis comb. nov. (type strain ATCC BAA-684T = DSM 15409T) is proposed. This revision is necessary because a previous proposal to retain saltwater isolates as species of Bacteriovorax and reclassify Bacteriovorax stolpii as Bacteriolyticum stolpii was not approved. The type species of a genus cannot be reassigned to another genus. Bacteriovorax stolpii is thus retained as the type species of Bacteriovorax and Halobacteriovorax marinus is the type species of Halobacteriovorax and of Halobacteriovoraceae fam. nov.


Author(s):  
Fenfa Li ◽  
Qingyi Xie ◽  
Shuangqing Zhou ◽  
Fandong Kong ◽  
Yun Xu ◽  
...  

Strain HNM0947T, representing a novel actinobacterium, was isolated from the coral Galaxea astreata collected from the coast of Wenchang, Hainan, China. The strain was found to have morphological and chemotaxonomic characteristics consistent with the genus Nocardiopsis . The organism formed abundant fragmented substrate mycelia and aerial mycelia which differentiated into non-motile, rod-shaped spores. Whole-cell hydrolysates contained meso-diaminopimelic acid and no diagnostic sugars. The major menaquinones were MK-10(H8), MK-10(H6) and MK-10(H4). The major phospholipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannosides. The major fatty acids were iso-C16:0, anteiso-C17:0, C18:0, C18:0 10-methyl (TBSA) and anteiso-C15:0. The G+C content was 71.3 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain HNM0947T belonged to the genus Nocardiopsis and shared highest sequence similarity to Nocardiopsis salina YIM 90010T (98.8%), Nocardiopsis xinjiangensis YIM 90004T(98.5%) and Nocardiopsis kunsanensis DSM 44524T (98.3%). The strain HNM0947T was distinguished from its closest type strain by low average nucleotide identity (90.8%) and dDDH values (60.4%) respectively. Based on genotypic, chemotaxonomic and phenotypic characteristics, it was concluded that strain HNM0947T represents a novel species of the genus Nocardiopsis whose name was proposed as Nocardiopsis coralli sp. nov. The type strain was HNM0947T (=CCTCC AA 2020015 T=KCTC 49525 T).


Author(s):  
Dominic A. Stoll ◽  
Nicolas Danylec ◽  
Christina Grimmler ◽  
Sabine E. Kulling ◽  
Melanie Huch

The strain Adlercreutzia caecicola DSM 22242T (=CCUG 57646T=NR06T) was taxonomically described in 2013 and named as Parvibacter caecicola Clavel et al. 2013. In 2018, the name of the strain DSM 22242T was changed to Adlercreutzia caecicola (Clavel et al. 2013) Nouioui et al. 2018 due to taxonomic investigations of the closely related genera Adlercreutzia, Asaccharobacter and Enterorhabdus within the phylum Actinobacteria . However, the first whole draft genome of strain DSM 22242T was published by our group in 2019. Therefore, the genome was not available within the study of Nouioui et al. (2018). The results of the polyphasic approach within this study, including phenotypic and biochemical analyses and genome-based taxonomic investigations [genome-wide average nucleotide identity (gANI), alignment fraction (AF), average amino acid identity (AAI), percentage of orthologous conserved proteins (POCP) and genome blast distance phylogeny (GBDP) tree], indicated that the proposed change of the name Parvibacter caecicola to Adlercreutzia caecicola was not correct. Therefore, it is proposed that the correct name of Adlercreutzia caecicola (Clavel et al. 2013) Nouioui et al. 2018 strain DSM 22242T is Parvibacter caecicola Clavel et al. 2013.


Author(s):  
Juan Du ◽  
Yang Liu ◽  
Tao Pei ◽  
Ming-Rong Deng ◽  
Honghui Zhu

A novel Gram-stain-negative, aerobic and rod-shaped bacterial strain designated as 6D45AT was isolated from mangrove soil and characterized using a polyphasic taxonomic approach. Strain 6D45AT was found to grow at 10–37 °C (optimum, 28 °C), at pH 6.0–9.0 (optimum, 7.0) and in 0–5 % (w/v) NaCl (optimum, 2%). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 6D45AT fell into the genus Salipiger and shared 99.1 % identity with the closest type strain Salipiger pacificus CGMCC 1.3455T and less than 97.2 % identity with other type strains of this genus. The 34.8 % digital DNA–DNA hybridization (dDDH) and 88.3 % average nucleotide identity (ANI) values between strain 6D45AT and the closest relative above were well below recognized thresholds of 70 % DDH and 95–96 % ANI for species definition, implying that strain 6D45AT should represent a novel genospecies. The phylogenomic analysis indicated that strain 6D45AT formed an independent branch distinct from reference strains. The predominant cellular fatty acid of strain 6D45AT was summed feature 8 (C18 : 1  ω6c and/or C18 : 1  ω7c, 66.9 %); the polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, two unidentified aminolipids, two unidentified glycolipids and an unknown lipid; the respiratory quinone was Q-10. The genomic DNA G+C content was 66.5 mol %. Based on the phenotypic and genotypic characteristics, strain 6D45AT is concluded to represent a novel species of the genus Salipiger , for which the name Salipiger mangrovisoli sp. nov., is proposed. The type strain of the species is 6D45AT (=GDMCC 1.1960T=KCTC 82334T). We also propose the reclassification of Paraphaeobacter pallidus as Salipiger pallidus comb. nov. and ‘ Pelagibaca abyssi ’ as a species of the genus Salipiger .


Author(s):  
Nicole Hugouvieux-Cotte-Pattat ◽  
Cécile Jacot des-Combes ◽  
Jérôme Briolay ◽  
Leighton Pritchard

The Pectobacteriaceae family of important plant pathogens includes the genus Dickeya . There are currently 12 described species of Dickeya , although some are poorly characterized at the genomic level. Only two genomes of Dickeya paradisiaca , the type strain CFBP 4178T and strain Ech703, have previously been sequenced. Members of this species are mostly of tropical or subtropical origin. During an investigation of strains present in our laboratory collection we sequenced the atypical strain A3967, registered as CFBP 722, isolated from Solanum lycopersicum (tomato) in the South of France in 1965. The genome of strain A3967 shares digital DNA–DNA hybridization and average nucleotide identity (ANI) values of 68 and 96 %, respectively, with the D. paradisiaca type strain CFBP 4178T. However, ANI analysis showed that D. paradisiaca strains are significantly dissimilar to the other Dickeya species, such that less than one third of their genomes align to any other Dickeya genome. On phenotypic, phylogenetic and genomic grounds, we propose a reassignment of D. paradisiaca to the genus level, for which we propose the name Musicola gen. nov., with Musicola paradisiaca as the type species and CFBP 4178T (NCPPB 2511T) as the type strain. Phenotypic analysis showed differences between strain A3967T and CFBP 4178T, such as for the assimilation of melibiose, raffinose and myo-inositol. These results support the description of two novel species, namely Musicola paradisiaca comb. nov. and Musicola keenii sp. nov., with CFBP 4178T (NCPPB 2511T=LMG 2542T) and A3967T (CFBP 8732T=LMG 31880T) as the type strains, respectively.


2020 ◽  
Vol 70 (10) ◽  
pp. 5287-5295 ◽  
Author(s):  
Yajun Ge ◽  
Yuanmeihui Tao ◽  
Jing Yang ◽  
Xin-He Lai ◽  
Dong Jin ◽  
...  

Four unknown strains belonging to the genus Arthrobacter were isolated from plateau wildlife on the Qinghai–Tibet Plateau of PR China. Phylogenetic analysis based on 16S rRNA gene sequences showed that the four isolates were separated into two clusters. Cluster I (strains 785T and 208) had the greatest 16S rRNA gene sequence similarity to Arthrobacter citreus (98.6 and 98.7 %, respectively), Arthrobacter luteolus (98.0 and 98.1%, respectively), Arthrobacter gandavensis (97.9 and 98.0 %, respectively) and Arthrobacter koreensis (97.6 and 97.7 %, respectively). Likewise, cluster II (strains J391T and J915) had the highest sequence similarity to Arthrobacter ruber (98.6 and 98.3 %, respectively) and Arthrobacter agilis (98.1 and 97.9  %, respectively). Average nucleotide identity and the digital DNA–DNA hybridization values illustrated that the two type strains, 785T and J391T, represented two separate novel species that are distinct from all currently recognized species in the genus Arthrobacter . These strains had DNA G+C contents of 66.0–66.1 mol% (cluster I) and 68.0 mol% (cluster II). The chemotaxonomic properties of strains 785T and J391T were in line with those of the genus Arthrobacter : anteiso-C15:0 (79.3 and 40.8 %, respectively) as the major cellular fatty acid, MK-8(H2) (65.8 %) or MK-9(H2) (75.6 %) as the predominant respiratory quinone, a polar lipid profile comprising diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, glycolipids and phospholipid, and A3α or A4α as the cell wall peptidoglycan type. On the basis of our results, two novel species in the genus Arthrobacter are proposed, namely Arthrobacter yangruifuii sp. nov. (type strain, 785T=CGMCC 1.16725T=GDMCC 1.1592T=JCM 33491T) and Arthrobacter zhaoguopingii sp. nov. (type strain, J391T=CGMCC 1.17382T=GDMCC 1.1667T=JCM 33841T).


2019 ◽  
Vol 69 (4) ◽  
pp. 1087-1092 ◽  
Author(s):  
Itaru Dekio ◽  
Andrew McDowell ◽  
Mitsuo Sakamoto ◽  
Shuta Tomida ◽  
Moriya Ohkuma

In 2016, division of the genus Propionibacterium into four distinct genera was proposed. As a consequence, the species Propionibacterium acnes was transferred to Cutibacterium gen. nov. as Cutibacterium acnes comb. nov. The three recently proposed subspecies of P. acnes were not, however, accommodated in this proposal. Following a very recent validation of a new combination for C. acnes subsp. defendens and an automatically created C. acnes subsp. acnes , we now propose the new combination, C. acnes subsp. elongatum comb. nov. The type strain of Cutibacterium acnes subsp. elongatum is JCM 18919T (=NCTC 13655T). On the basis of further genomic and phenotypic (haemolysis and MALDI-TOF mass spectrometry) analyses of these subspecies, we also provide emended descriptions of the genus Cutibacterium Scholz and Kilian 2016, C. acnes subsp. acnes (Gilchrist 1900) Nouioui et al. 2018, and C. acnes subsp. defendens (McDowell et al. 2016) Nouioui et al. 2018.


2020 ◽  
Vol 70 (12) ◽  
pp. 6301-6306
Author(s):  
Sooyeon Park ◽  
Seo Yeon Lee ◽  
Wonyong Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, aerobic, non-spore-forming, motile by single polar flagellum and ovoid or rod-shaped bacterial strain, designated JBTF-M23T, was isolated from tidal flat sediment collected from the Yellow Sea, Republic of Korea. Neighbour-joining phylogenetic tree of 16S rRNA gene sequences showed that strain JBTF-M23T fell within the clade comprising the type strains of Pseudoalteromonas species, clustering with the type strains of P. byunsanensis and P. amylolytica . Strain JBTF-M23T exhibited the highest 16S rRNA gene sequence similarity value (98.6 %) to the type strain of P. rubra and sequence similarities of 98.3 and 97.7 % to the type strains of P. byunsanensis and P. amylolytica, respectively. The DNA G+C content of strain JBTF-M23T from genomic sequence data was 41.98 %. The ANI and dDDH values between strain JBTF-M23T and the type strains of P. rubra , P. byunsanensis and P. amylolytica were 71.3–76.6 and 19.4–19.9 %, respectively. Strain JBTF-M23T contained Q-8 as the predominant ubiquinone and C16 : 1  ω7c and/or C16 : 1  ω6c, C16 : 0 and C18 : 1  ω7c as the major fatty acids. The major polar lipids of strain JBTF-M23T were phosphatidylethanolamine and one unidentified aminolipid. Distinguished phenotypic properties, along with the phylogenetic and genetic distinctiveness, revealed that strain JBTF-M23T is separated from recognized Pseudoalteromonas species. On the basis of the data presented, strain JBTF-M23Tis considered to represent a novel species of the genus Pseudoalteromonas , for which the name Pseudoalteromonas caenipelagi sp. nov. is proposed. The type strain is JBTF-M23T(=KACC 19900T=NBRC 113647T).


Author(s):  
Yang Liu ◽  
Tao Pei ◽  
Juan Du ◽  
Meijie Chao ◽  
Ming-Rong Deng ◽  
...  

A novel Gram-stain-negative, facultatively anaerobic, rod-shaped and non-motile bacterial strain, designated as 4C16AT, was isolated from a tidal flat sediment and characterized by using a polyphasic taxonomic approach. Strain 4C16AT was found to grow at 10–40 °C (optimum, 28 °C), at pH 5.0–10.0 (optimum, pH 6.0–7.0) and in 0–6 % (w/v) NaCl (optimum, 1 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 4C16AT fell into the genus Roseibium , and shared the highest identity of 98.9 % with the closest type strain Roseibium suaedae KACC 13772T and less than 98.0 % identity with other type strains of recognized species within this genus. The phylogenomic analysis indicated that strain 4C16AT formed an independent branch within this genus. The 28.6 % digital DNA–DNA hybridization estimate and 85.0 % average nucleotide identity between strains 4C16AT and R. suaedae KACC 13772T were the highest, but still far below their respective threshold for species definition, implying that strain 4C16AT should represent a novel genospecies. The predominant cellular fatty acid was summed feature 8; the polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylmonomethylethanolamine; the respiratory quinones were Q-9 and Q-10. The genomic DNA G+C content was 59.8mol %. Based on phylogenetic analyses and phenotypic and chemotaxonomic characteristics, strain 4C16AT is concluded to represent a novel species of the genus Roseibium , for which the name Roseibium litorale sp. nov. is proposed. The type strain of the species is 4C16AT (=GDMCC 1.1932T=KACC 22078T). We also propose the reclassification of Labrenzia polysiphoniae as Roseibium polysiphoniae comb. nov. and ‘Labrenzia callyspongiae’ as Roseibium callyspongiae sp. nov.


Sign in / Sign up

Export Citation Format

Share Document