scholarly journals Halioglobus maricola sp. nov., isolated from coastal seawater

2020 ◽  
Vol 70 (3) ◽  
pp. 1868-1875 ◽  
Author(s):  
Shan-Hui Li ◽  
Jaeho Song ◽  
Yeonjung Lim ◽  
Yochan Joung ◽  
Ilnam Kang ◽  
...  

A Gram-stain-negative, rod-shaped, aerobic, non-flagellated, chemoheterotrophic bacterium, designated IMCC14385T, was isolated from surface seawater of the East Sea, Republic of Korea. The 16S rRNA gene sequence analysis indicated that IMCC14385T represented a member of the genus Halioglobus sharing 94.6–97.8 % similarities with species of the genus. Whole-genome sequencing of IMCC14385T revealed a genome size of 4.3 Mbp and DNA G+C content of 56.7 mol%. The genome of IMCC14385T shared an average nucleotide identity of 76.6 % and digital DNA–DNA hybridization value of 21.6 % with the genome of Halioglobus japonicus KCTC 23429T. The genome encoded the complete poly-β-hydroxybutyrate biosynthesis pathway. The strain contained summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and C17 : 1 ω8c as the predominant cellular fatty acids as well as ubiquinone-8 (Q-8) as the respiratory quinone. The polar lipids detected in the strain were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, five unidentified phospholipids, an unidentified aminolipid, an unidentified aminophospholipid and four unidentified lipids. On the basis of taxonomic data obtained in this study, it is suggested that IMCC14385T represents a novel species of the genus Halioglobus , for which the name Halioglobus maricola sp. nov. is proposed. The type strain is IMCC14385T (=KCTC 72520T=NBRC 114072T).

2013 ◽  
Vol 63 (Pt_8) ◽  
pp. 2951-2956 ◽  
Author(s):  
Sei Joon Oh ◽  
Na-Ri Shin ◽  
Dong-Wook Hyun ◽  
Pil Soo Kim ◽  
Joon Yong Kim ◽  
...  

A novel, Gram-stain-positive, non-motile, facultatively anaerobic, rod- or coccoid-shaped bacterium, designated strain ORY33T, was isolated from the gut of a camel cricket (Diestrammena coreana). The 16S rRNA gene sequence analysis showed that strain ORY33T belonged to the genus Weissella , with highest sequence similarity to Weissella koreensis S-5623T (97.7 %). The strain grew optimally at 30 °C and pH 7 in the presence of 0 % (w/v) NaCl. Catalase and oxidase activities were negative. The genomic DNA G+C content of strain ORY33T was 45.1 mol%. DNA–DNA hybridization values between strain ORY33T and closely related members of the genus Weissella were less than 27 %. The major fatty acids of strain ORY33T were C18 : 1ω9c, C16 : 0 and C14 : 0. Based on these phenotypic, phylogenetic and genotypic analyses, strain ORY33T represents a novel species belonging to the genus Weissella , for which the name Weissella diestrammenae sp. nov. is proposed. The type strain is ORY33T ( = KACC 16890T = JCM 18559T).


2019 ◽  
Vol 69 (4) ◽  
pp. 1016-1023 ◽  
Author(s):  
Xiang-yue Zhou ◽  
Zeng-hong Gao ◽  
Mei-hong Chen ◽  
Mei-qi Jian ◽  
Li-hong Qiu

Cells of bacterial strains 4 G-K06T and 4MSK11T, isolated from soil samples collected from monsoon evergreen broad-leaved forest of the Dinghushan Mountain (112° 31′ E 23° 10′ N), Guangdong Province, PR China, were Gram-stain-negative, aerobic, non-spore-forming, non-motile and rod-shaped. Strain 4 G-K06T grew at 10–37 °C, pH 3.5–7.5 and 0–3.5 % (w/v) NaCl; while 4MSK11T grew at 4–42 °C, pH 3.5–7.5 and 0–2.5 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed strain 4 G-K06T formed a clade with Dyella flagellata 4 M-K16T, Dyella acidisoli 4M-Z03T, Dyella humi DHG40T and Dyella nitratireducens DHG59T, while strain 4MSK11T formed a clade with Dyella caseinilytica DHOB09T and Dyella mobilis DHON07T, both within the genus Dyella . The result of the partial atpD, gyrB and lepA gene sequence analysis supported the conclusion based on 16S rRNA gene sequence analysis, which showed that these two strains represent two novel species of Dyella . The average nucleotide identity and digital DNA–DNA hybridization value for the whole genomes were 75.0–79.0 and 20.3–22.6 % between strains 4 G-K06T, 4MSK11T and those described Dyella species with genome sequences; while the DNA–DNA hybridization rates between strains 4 G-K06T, 4MSK11T and closely related Dyella species (without genome sequence) were 29.5–41.8 %. The major cellular fatty acids of these two strains were iso-C15 : 0, iso-C16 : 0 and iso-C17 : 1 ω9c, while the major polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and several unidentified phospholipids and aminophospholipids. The only ubiquinone of these two strains was ubiquinone-8. The DNA G+C contents of 4 G-K06T and 4MSK11T were 60.4 and 61.3 mol%, respectively. On the basis of the evidence presented here, strains 4 G-K06T and 4MSK11T represent two novel species of the genus Dyella , for which the names Dyella monticola sp. nov. (type strain 4 G-K06T=LMG 30268T=GDMCC 1.1188T) and Dyella psychrodurans sp. nov. (type strain 4MSK11T=KCTC 62280T=GDMCC 1.1185T) are proposed.


2014 ◽  
Vol 64 (Pt_10) ◽  
pp. 3453-3458 ◽  
Author(s):  
Hao Feng ◽  
Yanhua Zeng ◽  
Yili Huang

A novel Gram-stain-negative bacteria, designated S37T, was isolated from soil of the Xixi wetland, Zhejiang province, China. Cells of strain S37T were aerobic, non-motile rods. Growth occurred at 10–37 °C (optimum, 25 °C), pH 5.0–9.7 (optimum, pH 7.5) and with 0–6 % (w/v) NaCl (optimum, 0.5 %). Based on 16S rRNA gene sequence analysis, strain S37T was found to be a member of the genus Sphingobacterium and shared highest similarity with Sphingobacterium composti 4M24T (95.78 %). The major fatty acids were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C15 : 0 and iso-C17 : 0 3-OH, and the DNA G+C content was 43.8 mol%. The predominant respiratory quinone was MK-7. Based on its phenotypic and chemotaxonomic characteristics and phylogenetic data, strain S37T represents a novel species of the genus Sphingobacterium , for which the name Sphingobacterium paludis sp. nov. (type strain S37T = CGMCC 1.12801T = NBRC 110386T) is proposed.


Author(s):  
Angéline Antezack ◽  
Manon Boxberger ◽  
Mariem Ben Khedher ◽  
Bernard La Scola ◽  
Virginie Monnet-Corti

A Gram-stain-negative bacterium, designated strain Marseille-Q3039T, was isolated from subgingival dental plaque of a woman with gingivitis in Marseille, France. Strain Marseille-Q3039T was found to be an anaerobic, motile and spore-forming crescent-shaped bacterium that grew at 25–41.5 °C (optimum, 37 °C), pH 5.5–8.5 (optimum, pH 7.5) and salinity of 5.0 g l−1 NaCl. The results of 16S rRNA gene sequence analysis revealed that strain Marseille-Q3039T was closely related to Selenomonas infelix ATCC 43532T (98.42 % similarity), Selenomonas dianae ATCC 43527T (97.25 %) and Centipedia periodontii DSM 2778T (97.19 %). The orthologous average nucleotide identity and digital DNA–DNA hybridization relatedness between strain Q3039T and its closest phylogenetic neighbours were respectively 84.57 and 28.2 % for S. infelix ATCC 43532T and 83.93 and 27.2 % for C. periodontii DSM 2778T. The major fatty acids were identified as C13 : 0 (27.7 %), C15 : 0 (24.4 %) and specific C13 : 0 3-OH (12.3 %). Genome sequencing revealed a genome size of 2 351 779 bp and a G+C content of 57.2 mol%. On the basis of the results from phenotypic, chemotaxonomic, genomic and phylogenetic analyses and data, we concluded that strain Marseille-Q3039T represents a novel species of the genus Selenomonas , for which the name Selenomonas timonae sp. nov. is proposed (=CSUR Q3039=CECT 30128).


2013 ◽  
Vol 63 (Pt_8) ◽  
pp. 3037-3042 ◽  
Author(s):  
Chanwit Suriyachadkun ◽  
Wipaporn Ngaemthao ◽  
Suwanee Chunhametha ◽  
Chitti Thawai ◽  
Jean-Jacques Sanglier

A Gram-positive filamentous bacterial strain that developed large campanulate sporangia at the ends of sporangiophores on substrate mycelium was isolated from bamboo forest soil in Thailand. According to the results of a polyphasic taxonomic study, our isolate had typical characteristics of members of the genus Actinoplanes . The 16S rRNA gene sequence analysis also indicated that strain A-T 6646T belonged to the genus Actinoplanes , being most closely related to Actinoplanes liguriensis DSM 43865T (97.61 %) and Actinoplanes octamycinicus NBRC 14524T (97.52 %). The DNA–DNA relatedness values, which differentiate the new strain from the most closely related species, were significantly below 70 %. The cell-wall peptidoglycan contained meso-diaminopimelic acid. The whole-cell sugars contained xylose and arabinose. The predominant menaquinone was MK-9(H4). The diagnostic phospholipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol. The predominant cellular fatty acids were iso-C16 : 0, anteiso-C17 : 0, iso-C15 : 0 and anteiso-C15 : 0. Following an evaluation of phenotypic, chemotaxonomic and genotypic studies, the isolate is proposed to represent a novel species to be named Actinoplanes siamensis sp. nov. The type strain is A-T 6646T ( = BCC 46194T = NBRC 109076T).


2013 ◽  
Vol 63 (Pt_11) ◽  
pp. 4158-4162 ◽  
Author(s):  
Xiao-Mei Fang ◽  
Jing Su ◽  
Hao Wang ◽  
Yu-Zhen Wei ◽  
Tao Zhang ◽  
...  

Two actinobacterial strains, CPCC 203464T and CPCC 203448, isolated from surface-sterilized stems of medicinal plants were subjected to a polyphasic taxonomic study. These two aerobic organisms formed pale yellow colonies on tryptic soy agar (TSA). Cells were Gram-stain-positive, non-acid-fast, non-motile, rod- or coccoid-like elements. Comparative 16S rRNA gene sequence analysis indicated that strains CPCC 203464T and CPCC 203448 were most closely related to the type strains of the species of the genus Williamsia . Chemotaxonomic properties such as containing meso-diaminopimelic acid in the cell wall, arabinose, galactose and ribose being the whole-cell hydrolysate sugars, phosphatidylethanolamine (PE), diphosphatidylglycerol (DPG), phosphatidylglycerol (PG) and phosphatidylinositol (PI) as the phospholipids, and C16 : 0, 10-methyl C18 : 0, C18 : 1ω9c, C16 : 1ω7c and/or iso-C15 : 0 2-OH as major fatty acids supported the affiliation of strains CPCC 203464T and CPCC 203448 to the genus Williamsia . The DNA–DNA hybridization values in combination with differentiating chemotaxonomic and physiological characteristics strongly suggested that these two isolates should be classified as representatives of a novel species of the genus Williamsia . The name Williamsia sterculiae sp. nov. is proposed, with strain CPCC 203464T ( = DSM 45741T = KCTC 29118T) as the type strain.


2015 ◽  
Vol 65 (Pt_3) ◽  
pp. 845-850 ◽  
Author(s):  
Xiao-Mei Ye ◽  
Cui-Wei Chu ◽  
Chao Shi ◽  
Jian-Chun Zhu ◽  
Qin He ◽  
...  

Strain BUT-8T, a Gram-stain-negative, non-motile and rod-shaped aerobic bacterium, was isolated from the activated sludge of a herbicide-manufacturing wastewater treatment facility. Comparative 16S rRNA gene sequence analysis revealed that strain BUT-8T clustered with species of the genus Lysobacter and was closely related to Lysobacter ruishenii DSM 22393T (98.3 %) and Lysobacter daejeonensis KACC 11406T (98.7 %). The DNA G+C content of the genomic DNA was 70.6 mol%. The major respiratory quinone was ubiquinone-8, and the major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an aminolipid. The major cellular fatty acids were iso-C15 : 0, iso-C16 : 0, iso-C17 : 0, iso-C11 : 0, iso-C11 : 0 3OH and summed feature 9 (comprising iso-C17 : 1ω9c and/or C16 : 010-methyl). The DNA–DNA relatedness between strain BUT-8T and its closest phylogenetic neighbours was below 70 %. Phylogenetic, chemotaxonomic and phenotypic results clearly demonstrated that strain BUT-8T belongs to the genus Lysobacter and represents a novel species for which the name Lysobacter caeni sp. nov. is proposed. The type strain is BUT-8T ( = CCTCC AB 2013087T = KACC 17141T).


2020 ◽  
Vol 70 (4) ◽  
pp. 2174-2177 ◽  
Author(s):  
Xun Yang ◽  
Zijie Zhou ◽  
Shuijiao Liao ◽  
Gejiao Wang

A Gram-stain-negative, filamentous rod-shaped, aerobic and non-motile strain, YX9T, was isolated from sludge of a manganese mine. Analysis of the 16S rRNA gene sequence revealed that strain YX9T formed the same branch within the members of the genus Runella and showed high relatedness to Runella slithyformis DSM 19594T (98.1 %), Runella palustris HMF3829T (96.0 %) and Runella zeae NS12T (95.4 %). The genome length of strain YX9T was 7.21 Mb, had 5985 coding sequences and a DNA G+C content of 44.8 mol%. The average nucleotide identity value of the draft genomes between strain YX9T and R . slithyformis DSM 19594T was 80.7 %. The major fatty acids of strain YX9T were iso-C15 : 0, C16:1 ω5c and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). The predominant respiratory quinone was menaquinone 7. The polar lipids of strain YX9T were phosphatidylethanolamine, four unidentified lipids, two aminolipids, a phospholipid and a glycolipid. Based on the results of genotypic and phenotypic studies, strain YX9T represents a novel species within the genus Runella , for which the name Runella aurantiaca sp. nov. is proposed (=KCTC 62875T=CCTCC AB 2018214T).


2015 ◽  
Vol 65 (Pt_4) ◽  
pp. 1167-1171 ◽  
Author(s):  
Satoru Shimizu ◽  
Akio Ueno ◽  
Takeshi Naganuma ◽  
Katsuhiko Kaneko

A methanogenic archaeon, strain HC-2T, was isolated from a deep diatomaceous shale formation. The strain grew on methanol, monomethylamine, dimethylamine, trimethylamine and dimethylsulphide, but not on acetate, H2/CO2, formate, 2-propanol, 2-butanol or cyclopentanol. Cells were Gram-stain-negative, non-motile, and coccus-like, 0.9–1.4 µm in diameter, and occurred singly, in pairs, or as aggregates. The strain grew at 10–40 °C (optimum 35 °C), pH 5.9–7.4 (optimum pH 6.6–6.8) and in 0–0.6 M NaCl (optimum 0.1–0.2 M). The genomic DNA G+C content was 41.5 mol% and the 16S rRNA gene sequence was closely related to those of Methanosarcina lacustris DSM 13486T (99.1 %) and Methanosarcina siciliae DSM 3028T (98.3 %). Values for DNA–DNA hybridization with these strains were less than 30 %. The phenotypic and phylogenetic features of HC-2T indicate that it represents a novel species of the genus Methanosarcina , for which the name Methanosarcina subterranea sp. nov. is proposed. The type strain is HC-2T ( = DSM 22503T = JCM 15540T = NBRC 102578T).


Author(s):  
Ji Young Jung ◽  
Hye Kyeong Kang ◽  
Hyun Mi Jin ◽  
Sang-Soo Han ◽  
Young Chul Kwon ◽  
...  

A Gram-positive, facultative anaerobic, catalase-negative, non-motile, non-spore-forming and rod-shaped lactic acid bacterium strain, denoted as NFFJ11T and isolated from total mixed fermentation feed in the Republic of Korea, was characterized through polyphasic approaches, including sequence analyses of the 16S rRNA gene and housekeeping genes (rpoA and pheS), determination of average nucleotide identity and in silico DNA–DNA hybridization, fatty acid methyl ester analysis, and phenotypic characterization. Phylogenetic analyses based on 16S rRNA, rpoA and pheS gene sequences revealed that strain NFFJ11T belonged to the genus Companilactobacillus . The 16S rRNA gene sequence of strain NFFJ11T exhibited high similarity to Companilactobacillus formosensis S215T (99.66 %), Companilactobacillus farciminis Rv4 naT (99.53 %), Companilactobacillus crustorum LMG 23699T (99.19 %), Companilactobacillus futsaii YM 0097T (99.06 %), Companilactobacillus zhachilii HBUAS52074T (98.86 %) and Companilactobacillus heilongiiangensis S4-3T (98.66 %). However, average nucleotide identity and in silico DNA–DNA hybridization values for these type strains were in the range of 79.90–92.93 % and 23.80–49.30 %, respectively, which offer evidence that strain NFFJ11T belongs to a novel species of the genus Companilactobacillus . The cell-wall peptidoglycan type was A4α (l-Lys–d-Asp) and the G+C content of the genomic DNA was 35.7 mol%. The main fatty acids of strain NFFJ11T were C18 : 1  ω9c (43.3 %), C16 : 0 (20.1 %) and summed feature 7 (18.3 %; comprising any combination of C19 : 1  ω7c, C19 : 1  ω6c and C19 : 0 cyclo ω10c). Through polyphasic taxonomic analysis, it was observed that strain NFFJ11T represents a novel species belonging to the genus Companilactobacillus , for which the name Companilactobacillus pabuli sp. nov. is proposed. The type strain is NFFJ11T (= KACC 21771T= JCM 34088T).


Sign in / Sign up

Export Citation Format

Share Document