scholarly journals Runella aurantiaca sp. nov., isolated from sludge of a manganese mine

2020 ◽  
Vol 70 (4) ◽  
pp. 2174-2177 ◽  
Author(s):  
Xun Yang ◽  
Zijie Zhou ◽  
Shuijiao Liao ◽  
Gejiao Wang

A Gram-stain-negative, filamentous rod-shaped, aerobic and non-motile strain, YX9T, was isolated from sludge of a manganese mine. Analysis of the 16S rRNA gene sequence revealed that strain YX9T formed the same branch within the members of the genus Runella and showed high relatedness to Runella slithyformis DSM 19594T (98.1 %), Runella palustris HMF3829T (96.0 %) and Runella zeae NS12T (95.4 %). The genome length of strain YX9T was 7.21 Mb, had 5985 coding sequences and a DNA G+C content of 44.8 mol%. The average nucleotide identity value of the draft genomes between strain YX9T and R . slithyformis DSM 19594T was 80.7 %. The major fatty acids of strain YX9T were iso-C15 : 0, C16:1 ω5c and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). The predominant respiratory quinone was menaquinone 7. The polar lipids of strain YX9T were phosphatidylethanolamine, four unidentified lipids, two aminolipids, a phospholipid and a glycolipid. Based on the results of genotypic and phenotypic studies, strain YX9T represents a novel species within the genus Runella , for which the name Runella aurantiaca sp. nov. is proposed (=KCTC 62875T=CCTCC AB 2018214T).

2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 587-592 ◽  
Author(s):  
Hien T. T. Ngo ◽  
KyungHwa Won ◽  
Juan Du ◽  
Heung-Min Son ◽  
YongJin Park ◽  
...  

A Gram-stain negative, facultatively anaerobic, non-motile, rod-shaped bacterium, designated strain THG-A13T, was isolated from Aglaia odorata rhizosphere soil in Gyeonggi-do, Republic of Korea. Based on 16S rRNA gene sequence comparisons, strain THG-A13T had close similarity with Lysobacter niabensis GH34-4T (98.5 %), Lysobacter oryzae YC6269T (97.9 %) and Lysobacter yangpyeongensis GH19-3T (97.3 %). Chemotaxonomic data revealed that strain THG-A13T possesses ubiquinone-8 (Q8) as the predominant isoprenoid quinone and iso-C15 : 0, iso-C16 : 0 and iso-C17 : 1ω9c as the major fatty acids. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol) and diphosphatidylglycerol. The G+C content was 66.3 mol%. The DNA–DNA relatedness values between strain THG-A13T and its closest phylogenetic neighbours were below 18.0 %. These data corroborated the affiliation of strain THG-A13T to the genus Lysobacter . These data suggest that the isolate represents a novel species for which the name Lysobacter terrae sp. nov. is proposed, with THG-A13T as the type strain ( = KACC 17646T = JCM 19613T).


2014 ◽  
Vol 64 (Pt_7) ◽  
pp. 2193-2197 ◽  
Author(s):  
Jung-Hye Choi ◽  
Ji-Hye Seok ◽  
Ju-Hee Cha ◽  
Chang-Jun Cha

A novel bacterial strain, designated CJ29T, was isolated from ginseng soil of Anseong in South Korea. Cells of strain CJ29T were Gram-stain-negative, facultatively anaerobic, rod-shaped and non-motile. Strain CJ29T grew optimally at 28–30 °C and pH 7.0. Based on 16S rRNA gene sequence analysis, strain CJ29T was shown to belong to the genus Lysobacter within the class Gammaproteobacteria and was related most closely to Lysobacter soli DCY21T (98.5 % similarity) and Lysobacter niastensis GH41-7T (98.2 %). DNA–DNA relatedness between strain CJ29T and its closest relatives was below 55.6 %. The predominant cellular fatty acids of strain CJ29T were iso-C15 : 0, iso-C16 : 0 and iso-C17 : 1ω9c. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The major isoprenoid quinone was ubiquinone 8 (Q-8). The G+C content of the genomic DNA was 65.6 mol%. Phenotypic, genotypic and phylogenetic characteristics strongly supported the differentiation of strain CJ29T from related species of the genus Lysobacter . On the basis of data from this polyphasic taxonomic study, strain CJ29T is considered to represent a novel species of the genus Lysobacter , for which the name Lysobacter panacisoli sp. nov. is proposed. The type strain is CJ29T ( = KACC 17502T = JCM 19212T).


Author(s):  
Yuxin Chen ◽  
Arisa Nishihara ◽  
Takao Iino ◽  
Moriya Ohkuma ◽  
Shin Haruta

A novel nitrogen-fixing fermentative bacterium, designated as YA01T, was isolated from Nakabusa hot springs in Japan. The short-rod cells of strain YA01T were Gram-positive and non-sporulating. Phylogenetic trees of the 16S rRNA gene sequence and concatenated sequences of 40 single-copy ribosomal genes revealed that strain YA01T belonged to the genus Caldicellulosiruptor and was closely related to Caldicellulosiruptor hydrothermalis 108T, Caldicellulosiruptor bescii DSM 6725T and Caldicellulosiruptor kronotskyensis 2002T. The 16S rRNA gene sequence of strain YA01T shares less than 98.1 % identity to the known Caldicellulosiruptor species. The G+C content of the genomic DNA was 34.8 mol%. Strain YA01T shares low genome-wide average nucleotide identity (90.31–91.10 %), average amino acid identity (91.45–92.10 %) and <70 % digital DNA–DNA hybridization value (41.8–44.2 %) with the three related species of the genus Caldicellulosiruptor . Strain YA01T grew at 50–78 °C (optimum, 70 °C) and at pH 5.0–9.5 (optimum, pH 6.5). Strain YA01T mainly produced acetate by consuming d(+)-glucose as a carbon source. The main cellular fatty acids were iso-C17 : 0 (35.7 %), C16 : 0 (33.3 %), DMA16 : 0 (6.6 %) and iso-C15 : 0 (5.9 %). Based on its distinct phylogenetic position, biochemical and physiological characteristics, and the major cellular fatty acids, strain YA01T is considered to represent a novel species of the genus Caldicellulosiruptor for which the name Caldicellulosiruptor diazotrophicus sp. nov. is proposed (type strain YA01T=DSM 112098T=JCM 34253T).


2020 ◽  
Vol 70 (3) ◽  
pp. 1868-1875 ◽  
Author(s):  
Shan-Hui Li ◽  
Jaeho Song ◽  
Yeonjung Lim ◽  
Yochan Joung ◽  
Ilnam Kang ◽  
...  

A Gram-stain-negative, rod-shaped, aerobic, non-flagellated, chemoheterotrophic bacterium, designated IMCC14385T, was isolated from surface seawater of the East Sea, Republic of Korea. The 16S rRNA gene sequence analysis indicated that IMCC14385T represented a member of the genus Halioglobus sharing 94.6–97.8 % similarities with species of the genus. Whole-genome sequencing of IMCC14385T revealed a genome size of 4.3 Mbp and DNA G+C content of 56.7 mol%. The genome of IMCC14385T shared an average nucleotide identity of 76.6 % and digital DNA–DNA hybridization value of 21.6 % with the genome of Halioglobus japonicus KCTC 23429T. The genome encoded the complete poly-β-hydroxybutyrate biosynthesis pathway. The strain contained summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and C17 : 1 ω8c as the predominant cellular fatty acids as well as ubiquinone-8 (Q-8) as the respiratory quinone. The polar lipids detected in the strain were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, five unidentified phospholipids, an unidentified aminolipid, an unidentified aminophospholipid and four unidentified lipids. On the basis of taxonomic data obtained in this study, it is suggested that IMCC14385T represents a novel species of the genus Halioglobus , for which the name Halioglobus maricola sp. nov. is proposed. The type strain is IMCC14385T (=KCTC 72520T=NBRC 114072T).


2012 ◽  
Vol 62 (Pt_10) ◽  
pp. 2322-2329 ◽  
Author(s):  
Ismet Ara ◽  
Baljinova Tsetseg ◽  
Damdinsuren Daram ◽  
Manabu Suto ◽  
Katsuhiko Ando

A Gram-reaction-positive aerobic actinomycete, designated strain MN08-A0118T, which produced short chains of non-motile spores on the tips of long sporophores and formed yellow–brown colonies with branched substrate mycelium, was studied in detail to determine its taxonomic position. On the basis of 16S rRNA gene sequence analyses, strain MN08-A0118T was grouped into the genus Herbidospora , being most closely related to Streptosporangium claviforme (98.2 %), Herbidospora osyris (98.2 %), Herbidospora daliensis (98.2 %), Herbidospora cretacea (97.9 %) and Herbidospora yilanensis (97.4 %). Chemotaxonomic data supported allocation of the strain to the genus Herbidospora . MK-10(H4) was the predominant menaquinone with minor amounts of MK-10(H6), MK-10(H2) and MK-9(H4); the fatty acid profile contained major amounts of iso-C16 : 0, C17 : 0 10-methyl, iso-C14 : 0 and iso-C16 : 0 2-OH; the phospholipid profile contained phosphatidylethanolamine, phosphatidylmethylethanolamine and glucosamine-containing phospholipids; and the whole-cell sugars included ribose, glucose, galactose, madurose and rhamnose (trace). The phylogenetic data, phenotypic and genotypic properties and DNA–DNA hybridization differentiated this strain from its closely related strains, S. claviforme (35–54 % DNA–DNA relatedness), H. osyris (39–51 %), H. daliensis (3–16 %), H. cretacea (34–39 %) and H. yilanensis (34–42 %). Thus, MN08-A0118T represents a novel species of the genus Herbidospora , for which the name Herbidospora mongoliensis sp. nov. is proposed, with MN08-A0118T ( = NBRC 105882T  = VTCC D9-22T) as the type strain. In addition, DNA–DNA hybridization results showed that S. claviforme and H. osyris are synonyms of H. cretacea .


2014 ◽  
Vol 64 (Pt_1) ◽  
pp. 66-71 ◽  
Author(s):  
Jin-Jin Liu ◽  
Xin-Qi Zhang ◽  
Fang-Tao Chi ◽  
Jie Pan ◽  
Cong Sun ◽  
...  

A Gram-stain-negative, non-motile and aerobic bacterium, designated CF17T, was isolated from coastal planktonic seaweeds, East China Sea. The isolate grew at 18–37 °C (optimum 25–28 °C), pH 6.5–9.0 (optimum 7.0–8.0) and with 0–5 % NaCl (optimum 1–2 %, w/v) and 0.5–10 % sea salts (optimum 2–3 %, w/v). Growth of strain CF17T could be stimulated prominently by supplementing the growth medium with the autoclaved supernatant of a culture of strain CF5, which was isolated from the same sample along with strain CF17T. The cell morphology of strain CF17T was a bean-shaped rod consisting of a swollen end and a long prostheca. The phylogenetic analysis of 16S rRNA gene sequences indicated that strain CF17T clustered with Gemmobacter nectariphilus DSM 15620T within the genus Gemmobacter . The DNA G+C content of strain CF17T was 61.4 mol%. The respiratory quinone was ubiquinone Q-10. The major fatty acids included C18 : 1ω7c and C18 : 0. The polar lipids of strain CF17T consisted of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, two uncharacterized phospholipids, one uncharacterized aminolipid, three uncharacterized glycolipids and one uncharacterized lipid. On the basis of phenotypic, phylogenetic and chemotaxonomic data, strain CF17T ( = CGMCC 1.11024T = JCM 18498T) is considered to represent a novel species of the genus Gemmobacter , for which the name Gemmobacter megaterium sp. nov. is proposed.


2014 ◽  
Vol 64 (Pt_4) ◽  
pp. 1373-1377 ◽  
Author(s):  
Xiao-Xia Zhang ◽  
Xue Tang ◽  
Rizwan Ali Sheirdil ◽  
Lei Sun ◽  
Xiao-Tong Ma

Two strains (J3-AN59T and J3-N84) of Gram-stain-negative, aerobic and rod-shaped bacteria were isolated from the roots of fresh rice plants. The 16S rRNA gene sequence similarity results showed that the similarity between strains J3-AN59T and J3-N84 was 100 %. Both strains were phylogenetically related to members of the genus Rhizobium , and they were most closely related to Rhizobium tarimense ACCC 06128T (97.43 %). Similarities in the sequences of housekeeping genes between strains J3-AN59T and J3-N84 and those of recognized species of the genus Rhizobium were less than 90 %. The polar lipid profiles of both strains were predominantly composed of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and an unknown aminophospholipid. The major cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C16 : 0. The DNA G+C contents of J3-AN59T and J3-N84 were 55.7 and 57.1 mol%, respectively. The DNA–DNA relatedness value between J3-AN59T and J3-N84 was 89 %, and strain J3-AN59T showed 9 % DNA–DNA relatedness to R. tarimense ACCC 06128T, the most closely related strain. Based on this evidence, we found that J3-AN59T and J3-N84 represent a novel species in the genus Rhizobium and we propose the name Rhizobium rhizoryzae sp. nov. The type strain is J3-AN59T ( = ACCC 05916T = KCTC 23652T).


2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 325-330 ◽  
Author(s):  
Cuiwei Chu ◽  
Cansheng Yuan ◽  
Xin Liu ◽  
Li Yao ◽  
Jianchun Zhu ◽  
...  

A novel aerobic, Gram-stain-negative, motile bacterium, designated strain BUT-10T, was isolated from the sludge of a pesticide manufacturing factory in Kunshan, China. Cells were rod-shaped (0.4–0.45×0.9–1.4 µm) and colonies were white, circular with entire edges and had a smooth surface. The strain grew at 25–37 °C, at pH 6.0–8.0 and with 0–0.5 % NaCl. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain BUT-10T was a member of the genus Phenylobacterium , and showed highest sequence similarities to Phenylobacterium muchangponense A8T (97.49 %), Phenylobacterium immobile DSM 1986T (97.14 %) and Phenylobacterium lituiforme FaiI3T (96.34 %). Major fatty acids (>5 %) were summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c), C16 : 0 and summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c). The major isoprenoid quinone was ubiquinone-10. The DNA G+C content was 71.85 mol%. Strain BUT-10T showed low DNA–DNA relatedness with P. muchangponense A8T (15.7±2.9 %) and P. immobile DSM 1986T (12.8±1.1 %). On the basis of the phenotypic, phylogenetic and genotypic data, strain BUT-10T is considered to represent a novel species of the genus Phenylobacterium , for which the name Phenylobacterium kunshanense sp. nov. is proposed. The type strain is BUT-10T ( = CCTCC AB 2013085T = KCTC 42014T).


2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 208-211 ◽  
Author(s):  
Lourdes Martínez-Aguilar ◽  
Jesús Caballero-Mellado ◽  
Paulina Estrada-de los Santos

Phylogenetic analysis of the 16S rRNA gene sequences of strains TE26T and K6 belonging to Wautersia numazuensis Kageyama et al. 2005 showed the strains to be deeply intermingled among the species of the genus Cupriavidus . The comparison showed that strain TE26T was closely related to the type strains of Cupriavidus pinatubonensis (99.1 % 16S rRNA gene sequence similarity), C. basilensis (98.7 %), C. necator (98.7 %) and C. gilardii (98.0 %). However, DNA–DNA hybridization experiments (less than 20 % relatedness) demonstrated that strain TE26T is different from these Cupriavidus species. A comparative phenotypic and chemotaxonomic analysis (based on fatty acid profiles) in combination with the 16S rRNA gene sequence phylogenetic analysis and the DNA–DNA hybridization results supported the incorporation of Wautersia numazuensis into the genus Cupriavidus as Cupriavidus numazuensis comb. nov.; the type strain is TE26T ( = LMG 26411T  = DSM 15562T  = CIP 108892T).


2012 ◽  
Vol 62 (Pt_4) ◽  
pp. 869-873 ◽  
Author(s):  
Bokun Lin ◽  
Guoyong Lu ◽  
Yandan Zheng ◽  
Wei Xie ◽  
Shengkang Li ◽  
...  

A novel yellow-pigmented, agarolytic bacterial strain, designated ZC1T, was isolated from the surface of the marine red alga Porphyra haitanensis collected near Nan Ao Island, Guangdong province, China. The isolate was Gram-stain-negative, strictly aerobic and rod-shaped and displayed β-galactosidase, alkaline phosphatase, catalase and oxidase activities. The predominant cellular fatty acids were iso-C15 : 0, summed feature 3 (comprising C16 : 1ω7c and/or iso-C15 : 0 2-OH) and iso-C17 : 0 3-OH. The major menaquinone was menaquinone 6 (MK-6). The DNA G+C content was 32.8 mol%. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain ZC1T was closely related to members of the genus Aquimarina in the family Flavobacteriaceae , phylum Bacteroidetes . Based on phylogenetic and phenotypic evidence, strain ZC1T ( = CCTCC AB 2010229T  = NBRC 107695T) represents the type strain of a novel species in the genus Aquimarina , for which the name Aquimarina agarilytica sp. nov. is proposed.


Sign in / Sign up

Export Citation Format

Share Document