scholarly journals Rhizobium rhizophilum sp. nov., an indole acetic acid-producing bacterium isolated from rape (Brassica napus L.) rhizosphere soil

2020 ◽  
Vol 70 (9) ◽  
pp. 5019-5025 ◽  
Author(s):  
Jun-lian Gao ◽  
Li-wei Wang ◽  
Jing Xue ◽  
Shuai Tong ◽  
Guixiang Peng ◽  
...  

A novel Gram-stain-negative, aerobic, rod-shaped and indole acetic acid-producing strain, designated 7209-2T, was isolated from rhizosphere of rape (Brassica napus L.) grown in the Yakeshi City, Inner Mongolia, PR China. The 16S rRNA gene sequence analysis indicated that strain 7209-2T belongs to the genus Rhizobium and is closely related to Rhizobium rosettiformans W3T, Rhizobium ipomoeae shin9-1T and Rhizobium wuzhouense W44T with sequence similarities of 98.2, 98.1 and 97.9 %, respectively. Phylogenetic analysis based on concatenated housekeeping recA and atpD gene sequences showed that strain 7209-2T formed a group together with R. wuzhouense W44T and R. rosettiformans W3T, with sequences similarities of 92.6 and 91.1 %, respectively. The genome size of strain 7209-2T was 5.25 Mb, comprising 5027 predicted genes with a DNA G+C content of 61.2 mol%. The average nucleotide identity and digital DNA–DNA hybridization comparisons among 7209-2T and reference strains for the most closely related species showed values below the accepted threshold for species discrimination. The major fatty acids of strain 7209-2T were summed feature 8 (C18 : 1  ω7c and/or C18 : 1  ω6c) and summed feature 2 (C12 : 0 aldehyde and/or unknown 10.953) . The major polar lipids were found to consist of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine and an unidentified aminophospholipid. The predominant ubiquinone was identified as quinone 10. Based on all the above results, strain 7209-2T represents a novel species of the genus Rhizobium , for which the name Rhizobium rhizophilum sp. nov. is proposed with 7209-2T (=CGMCC 1.15691T=DSM 103161T) as the type strain.

Author(s):  
Lida Zhang ◽  
Yanjie Jiao ◽  
Ling Ling ◽  
Han Wang ◽  
Wenshuai Song ◽  
...  

A novel growth-promoting and indole acetic acid-producing strain, designated NEAU-LLBT, was isolated from cow dung collected from Shangzhi, Heilongjiang Province, PR China. Cells of strain NEAU-LLBT were Gram-stain-positive, non-motile, aerobic and non-spore-forming. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain NEAU-LLBT belonged to the genus Microbacterium . Strain NEAU-LLBT had high 16S rRNA sequence similarities of 98.81 and 98.41 % to Microbacterium paludicola DSM 16915T and Microbacterium marinilacus DSM 18904T, and less than 98 % to other members of the genus Microbacterium . Chemotaxonomic characteristics showed that MK-11 and MK-12 were detected as the predominant menaquinones. The peptidoglycan contained glutamic acid, aspartic acid, glycine, ornithine and a small amount of alanine, with ornithine as the diagnostic diamino acid. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and an unidentified glycolipid. The major fatty acids were identified as anteiso-C15 : 0, iso-C16 : 0 and iso-C17 : 0. The genomic DNA G+C content of strain NEAU-LLBT was 70.2 mol%. In addition, the average nucleotide identity values between strain NEAU-LLBT and its reference strains, M. paludicola DSM 16915T, M. marinilacus DSM 18904T and M. album SYSU D8007T, were found to be 81.1, 79.4 and 78.7 %, respectively, and the level of digital DNA–DNA hybridization between them were 23.8, 22.6 and 21.8 %, respectively. Based on the phenotypic, phylogenetic and genotypic data, strain NEAU-LLBT is considered to represent a novel species of the genus Microbacterium , for which the name Microbacterium stercoris sp. nov is proposed, with NEAU-LLBT (=CCTCC AA 2018028T=JCM 32660T) as the type strain.


Author(s):  
Yuting Zhang ◽  
Junwei Zhao ◽  
Jiangmeihui Hu ◽  
Chuanyu Han ◽  
Bing Yu ◽  
...  

A Gram-positive, aerobic, heterotrophic, non-endospore-forming, rod-shaped and indole-acetic acid-producing strain, designated NEAU-184T, was isolated from marine sand collected in Sanya, PR China, and its taxonomic position was investigated using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequence data indicated that strain NEAU-184T should be assigned to the genus Agromyces and formed a distinct branch with its closest neighbour, Agromyces iriomotensis NBRC 106452T (99.1 %). 2,4-Diaminobutyric acid, d-alanine, d-glutamic acid and glycine were detected in cell-wall hydrolysate and glucose, rhamnose and xylose were detected in whole-cell hydrolysate. The polar lipids were found to contain diphosphatidylglycerol, glycolipid, phosphatidylglycerol and two unidentified lipids. The major menaquinone was MK-12 and the minor menaquinones were MK-13 and MK-11. The predominant fatty acids were anteiso-C17 : 0, anteiso-C15 : 0 and iso-C16 : 0. The DNA G+C content was 71.5 mol%. Furthermore, the strain could be clearly distinguished from its closely related type strains by the combination of DNA–DNA hybridization results and some phenotypic characteristics. Meanwhile, the strain has the ability to produce indole-acetic acid (0.334mg ml−1). Therefore, strain NEAU-184T represents a novel species of the genus Agromyces , for which the name Agromyces mariniharenae sp. nov. is proposed, with strain NEAU-184T (=CGMCC 4.7505T=JCM 32546T) as the type strain.


Author(s):  
Geeta Chhetri ◽  
Minchung Kang ◽  
Jiyoun Kim ◽  
Inhyup Kim ◽  
Yoonseop So ◽  
...  

A novel isolated yellow-pigmented bacterial designated strain UDD2T was isolated from a maize field soil sample collected in Ilsan, Republic of Korea. Cells of strain UDD2T were Gram-stain-negative, non-sporulating, long rod-shaped and exhibited flagellar motility. Cells could grow at 15–42 °C and pH 5.5–11.0. Strain UDD2T was sensitive to NaCl and barely tolerated up to 1 % NaCl (w/v). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain UDD2T formed a separate clade with the members of genus Sphingosinicella within the family Sphingomonadaceae . Strain UDD2T showed the highest 16S rRNA gene sequence similarity to Sphingosinicella vermicomposti KCTC 224446T (98.5 %) and Sphingosinicella humi KCTC 62519T (96.7 %), followed by members of the genus Sphingomonas (96.4–94.5 %) and Sphingobium (96.1–94.9 %), but they were located in other phylogenetic clusters. Average nucleotide identity and digital DNA–DNA hybridization values between strain UDD2T and S. vermicomposti KCTC 224446T and S. humi KCTC 62519T were 80.2/24.2 and 75.6/20.4 %, respectively. The total size of the genome was 2 421 697 bp and composed of one circular chromosome, with a G+C content of 63.7 mol%. Strain UDD2T produced indole acetic acid (IAA) in the presence of l-tryptophan. Bacterial IAA is a crucial phytohormone in plant growth and development. Gene clusters for indole-3-glycerol phosphate synthase and tryptophan synthase were found in the genome of strain UDD2T. To the best of our knowledge, no member of the genus Sphingosinicella has been reported to produce IAA to date. The major cellular fatty acids (>10 %) were found to be C16 : 0, C14 : 0 2OH and summed feature 3 (comprising C16  : 1 ω7c and/or iso-C15  :  0 2-OH). Strain UDD2T had ubiquinone Q-10 as the major respiratory quinone and homospermidine as the major polyamine. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, phosphatidylglycerol, phosphatidylcholine, three unidentified phosphoglycolipids, one unidentified phospholipid, one unidentified aminoglycophospholipid, one unidentified glycolipid and one unidentified polar lipid. Based on the phylogenetic, phenotypic, chemotaxonomic and genotypic data, strain UDD2T represents a novel species of the genus Sphingosinicella , for which the name Sphingosinicella flava is proposed. The type strain is UDD2T (=KCTC 82357T=NBRC 114507T).


Author(s):  
Xiao-Xian Huang ◽  
Lian Xu ◽  
Ji-Quan Sun

A Gram-stain-positive, facultatively anaerobic, spore-forming, motile with unipolar biflagella, rod-shaped, indole acetic acid-producing bacterium, named LD4P30T, was isolated from a root of Suaeda salsa collected in Inner Mongolia, northern China. Strain LD4P30T grew at pH 6.0–11.0 (optimum, pH 7.0), 10–40 °C (35 °C) and in the presence of 1–15% (w/v) NaCl (5%). The strain was positive for oxidase and negative for catalase. The major cellular fatty acids of strain LD4P30T were iso-C15:0, C15:1 ω5c and anteiso-C15:0; the major polar lipids were diphosphatidylglycerol and phosphatidylglycerol; and menaquinone-7 was the only respiratory quinone. The genomic DNA G+C content was 36.7 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain LD4P30T clustered with Gracilibacillus thailandensis TP2-8T, Gracilibacillus saliphilus YIM 91119T and Gracilibacillus lacisalsi BH312T, and showed 99.0, 98.9, 98.0 and <97.7% 16S rRNA gene similarity to G. thailandensis TP2-8T, G. saliphilus YIM 91119T, G. lacisalsi BH312T and all other current type strains, respectively. The digital DNA–DNA hybridization and average nucleotide identity based on blast values between strain LD4P30T and G. saliphilus YIM 91119T, G. thailandensis TP2-8T and G. lacisalsi BH312T were 44.9, 44.7 and 44.4%, and 91.1, 91.0 and 90.8%, respectively. Based on its phenotypic, physiological and phylogenetic characteristics, strain LD4P30T represents a novel species, for which the name Gracilibacillus suaedae is proposed. The type strain is LD4P30T (=CGMCC 1.17697T=KCTC 82375T).


Author(s):  
Hai-Tao Wang ◽  
Lian Xu ◽  
Ji-Quan Sun

A Gram-stain-positive, strictly aerobic, motile, endospore-forming, milk-white, indole acetic acid-producing, rod-shaped bacterial strain, designated as HU2P27T, was isolated from a shoot of Kalidium cuspidatum collected in Tumd Right Banner, Inner Mongolia, PR China. Strain grew at 10–40 °C (optimum, 30 °C), at pH 6.0–9.0 (optimum, pH 7.0) and with 0–14.0 % NaCl (optimum, 5.0–8.0 %). The strain tested positive for oxidase, catalase and nitrate reductase. The phylogenetic trees based on the 16S rRNA gene sequence and the core genome both showed that strain HU2P27T clustered with Aquibacillus koreensis BH30097T, sharing 97.7 % and <97.0 % of 16S rRNA gene similarity with A. koreensis BH30097T and any other type strain. Strain HU2P27T contained MK-7 as the major respiratory quinone. Its major fatty acids were anteiso-C15 : 0 and iso-C15 : 0, and the major polar lipids were phosphatidylglycerol, diphosphatidylglycerol and four unidentified phospholipids. The genomic DNA G+C content was 36.0 mol%. The average nucleotide identity, amino acid identity and digital DNA–DNA hybridization values of strain HU2P27T with A. koreensis BH30097T were 71.7, 69.2 and 19.4%, respectively. The phylogenetic, physiological and phenotypic results allowed the discrimination of strain HU2P27T from its phylogenetic relatives. The name Aquibacillus kalidii sp. nov. is therefore proposed. The type strain is strain HU2P27T (=CGMCC 1.18646T=KCTC 43248T). Based on the results of 16S rRNA gene and genome analyses, we propose the reclassification of Virgibacillus campisalis Lee et al. 2012 as a later heterotypic synonym of Virgibacillus alimentarius Kim et al. 2011.


Author(s):  
Xue Zhang ◽  
Lida Zhang ◽  
XiaoYan Yu ◽  
Jing Zhang ◽  
Yanjie Jiao ◽  
...  

A novel actinobacterium, designated strain NEAU-351T, was isolated from cow dung collected from Shangzhi, Heilongjiang Province, northeast PR China and characterized using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NEAU-351T belonged to the genus Nocardia , with the highest similarity (98.96 %) to Nocardia takedensis DSM 44801T and less than 98.0 % identity with other type strains of the genus Nocardia . The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The major menaquinone was observed to contain MK-8(H4, ω-cycl) (78.2 %). The fatty acid profile mainly consisted of C16 : 0, C18 : 1  ω9c and 10-methyl C18 : 0. Mycolic acids were present. The genomic DNA G+C content of strain NEAU-351T was 68.1 mol%. In addition, the average nucleotide identity values between strain NEAU-351T and its reference strains, Nocardia takedensis DSM 44801T and Nocardia arizonensis NBRC 108935T, were found to be 81.4 and 82.9 %, respectively, and the level of digital DNA–DNA hybridization between them were 24.8 % (22.5–27.3 %) and 26.3 % (24–28.8 %), respectively. Here we report on the taxonomic characterization and classification of the isolate and propose that strain NEAU-351T represents a new species of the genus Nocardia , for which the name Nocardia bovistercoris is proposed. The type strain is NEAU-351T (=CCTCC AA 2019090T=DSM 110681T).


Author(s):  
Lina Sun ◽  
Wei Chen ◽  
Kaihua Huang ◽  
Weiguang Lyu ◽  
Xinhua Gao

Strain SJQ9T, an aerobic bacterium isolated from a soil sample collected in Shanghai, PR China, was characterized using a polyphasic approach. It grew optimally at pH 7.0, 30–35 °C and in the presence of 1 % (w/v) NaCl. A comparative analysis of 16S rRNA gene sequences showed that strain SJQ9T fell within the genus Aquabacterium . The closest phylogenetic relatives of strain SJQ9T were Aquabacterium citratiphilum DSM 11900T (98.6 % sequence similarity) and Aquabacterium commune DSM 11901T (96.4 %). Cells of the strain were Gram-stain-negative, motile, non-spore-forming, rod-shaped and positive for oxidase activity and negative for catalase. The chemotaxonomic properties of strain SJQ9T were consistent with those of the genus Aquabacterium : the major fatty acid was summed feature 3 (C16 : 1  ω6c and/or C16 : 1  ω7c). The isoprenoid quinone was Q-8. The major polar lipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol and diphosphatidylglycerol. The DNA G+C content was 65.7 mol%. Strain SH9T exhibited a DNA–DNA relatedness level of 34±2 % with A. citratiphilum DSM 11900T and 28±3 % with A. commune DSM 11901T. Based on the obtained data, strain SJQ9T represents a novel species of the genus Aquabacterium , for which the name Aquabacterium soli sp. nov. is proposed. The type strain is SJQ9T (=JCM 33106T=CCTCC AB 2018284T).


Author(s):  
Jingling Liang ◽  
Sai Wang ◽  
Ayizekeranmu Yiming ◽  
Luoyi Fu ◽  
Iftikhar Ahmad ◽  
...  

Strain L22-9T, a Gram-stain-negative and rod-shaped bacterium, motile by one polar flagellum, was isolated from cornfield soil in Bijie, Guizhou Province, PR China. Based on 16S rRNA gene sequences, it was identified as a Pseudomonas species. Multilocus sequence analysis of concatenated 16S rRNA, gyrB, rpoB and rpoD gene sequences showed that strain L22-9T formed a clearly separated branch, located in a cluster together with Pseudomonas brassicacearum LMG 21623T, Pseudomonas kilonensis DSM 13647T and Pseudomonas thivervalensis DSM 13194T. Whole-genome comparisons based on average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) confirmed that strain L22-9T should be classified as a novel species. It was most closely related to P. kilonensis DSM 13647T with ANI and dDDH values of 91.87 and 46.3 %, respectively. Phenotypic features that can distinguish strain L22-9T from P. kilonensis DSM 13647T are the assimilation ability of N-acetyl-d-glucosamine, poor activity of arginine dihydrolase and failure to ferment ribose and d-fucose. The predominant cellular fatty acids of strain L22-9T are C16 : 0, summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The respiratory quinones consist of Q-9 and Q-8. The polar lipids are diphosphatidylglycerol, phosphatidylethanolamine, two unidentified phosphoglycolipids, two unidentified aminophospholipids and an unidentified glycolipid. Based on the evidence, we conclude that strain L22-9T represents a novel species, for which the name Pseudomonas bijieensis sp. nov. is proposed. The type strain is L22-9T (=CGMCC 1.18528T=LMG 31948T), with a DNA G+C content of 60.85 mol%.


Author(s):  
Caixin Yang ◽  
Yibo Bai ◽  
Kui Dong ◽  
Jing Yang ◽  
Xin-He Lai ◽  
...  

Four Gram-stain-positive, catalase-negative, non-spore-forming, rod-shaped bacterial strains (zg-325T, zg329, dk561T and dk752) were isolated from the respiratory tract of marmot (Marmota himalayana) and the faeces of Tibetan gazelle (Procapra picticaudata) from the Qinghai-Tibet Plateau of PR China. The results of 16S rRNA gene sequence-based phylogenetic analyses indicated that strains zg-325T and dk561T represent members of the genus Actinomyces , most similar to Actinomyces denticolens DSM 20671T and Actinomyces ruminicola B71T, respectively. The DNA G+C contents of strains zg-325T and dk561T were 71.6 and 69.3 mol%, respectively. The digital DNA–DNA hybridization values of strains zg-325T and dk561T with their most closely related species were below the 70 % threshold for species demarcation. The four strains grew best at 35 °C in air containing 5 % CO2 on brain heart infusion (BHI) agar with 5 % sheep blood. All four strains had C18:1ω9c and C16:0 as the major cellular fatty acids. MK-8 and MK-9 were the major menaquinones in zg-325T while MK-10 was predominant in dk561T. The major polar lipids included diphosphatidylglycerol and phosphatidylinositol. On the basis of several lines of evidence from phenotypic and phylogenetic analyses, zg-325T and dk561T represent novel species of the genus Actinomyces , for which the name Actinomyces marmotae sp. nov. and Actinomyces procaprae sp. nov. are proposed. The type strains are zg-325T (=GDMCC 1.1724T=JCM 34091T) and dk561T (=CGMCC 4.7566T=JCM 33484T). We also propose, on the basis of the phylogenetic results herein, the reclassification of Actinomyces liubingyangii and Actinomyces tangfeifanii as Boudabousia liubingyangii comb. nov. and Boudabousia tangfeifanii comb. nov., respectively.


Author(s):  
Qin Ma ◽  
Rui-Feng Lei ◽  
Yu-Qian Li ◽  
Dilireba Abudourousuli ◽  
Zulihumaer Rouzi ◽  
...  

A bacterial strain, designated YZGR15T, was isolated from the root of an annual halophyte Suaeda aralocaspica, collected from the southern edge of the Gurbantunggut desert, north-west PR China. Cells of the isolate were Gram-stain-positive, facultatively anaerobic, irregular rods. Growth occurred at 4–42 °C (optimum, 30–37 °C), at pH 6.0–9.0 (optimum, pH 7.0–7.5) and in the presence of 0–9 % (w/v) NaCl (optimum, 2–5 %). Phylogenetic analysis using 16S rRNA gene sequences indicated that strain YZGR15T showed the highest sequence similarity to Sanguibacter keddieii (98.27 %), Sanguibacter antarcticus (98.20 %) and Sanguibacter inulinus (98.06 %). Results of genome analyses of strain YZGR15T indicated that the genome size was 3.16 Mb, with a genomic DNA G+C content of 71.9 mol%. Average nucleotide identity and digital DNA–DNA hybridization values between strain YZGR15Tand three type strains were in the range of 76.5–77.8 % and 20.0–22.2 %, respectively. Analysis of the cellular component of strain YZGR15T revealed that the primary fatty acids were anteiso-C15 : 0, C16 : 0, C14 : 0 and iso-C16 : 0 and the polar lipids included diphosphatidylglycerol, phosphatidylglycerol, three unidentified phospholipids and two unidentified glycolipids. The cell-wall characteristic amino acids were glutamic acid, alanine and an unknown amino acid. The whole-cell sugars for the strain were mannose, ribose, rhamnose, glucose and an unidentified sugar. The predominant respiratory quinone was MK-9(H4). Based on the results of genomic, phylogenetic, phenotypic and chemotaxonomic analyses, strain YZGR15T represents a novel species of the genus Sanguibacter , for which the name Sanguibacter suaedae sp. nov. is proposed. The type strain is YZGR15T (=CGMCC 1.18691T=KCTC 49659T)


Sign in / Sign up

Export Citation Format

Share Document