Entomobacter blattae gen. nov., sp. nov., a new member of the Acetobacteraceae isolated from the gut of the cockroach Gromphadorhina portentosa

Author(s):  
Juan Guzman ◽  
Atena Sadat Sombolestani ◽  
Anja Poehlein ◽  
Rolf Daniel ◽  
Ilse Cleenwerck ◽  
...  

A novel bacterium designated G55GPT and pertaining to the family Acetobacteraceae was isolated from the gut of the Madagascar hissing cockroach Gromphadorhina portentosa. The Gram-negative cells were rod-shaped and non-motile. The complete 16S rRNA sequence of the strain G55GPT showed the highest pairwise similarity to Gluconacetobacter johannae CFN-Cf-55T (95.35 %), suggesting it represents a potential new genus of the family Acetobacteraceae . Phylogenetic analysis based on 16S rRNA gene and 106 orthologous housekeeping protein sequences revealed that G55GPT forms a monophyletic clade with the genus Commensalibacter , which thus far has also been isolated exclusively from insects. The G55GPT genome size was 2.70 Mbp, and the G+C content was 45.4 mol%, which is lower than most acetic acid bacteria (51–68 mol%) but comparable to Swingsia samuiensis AH83T (45.1 mol%) and higher than Commensalibacter intestini A911T (36.8 mol%). Overall genome relatedness indices based on gene and protein sequences strongly supported the assignment of G55GPT to a new genus within the family Acetobacteraceae . The percentage of conserved proteins, which is a useful metric for genus differentiation, was below 54 % when comparing G55GPT to type strains of acetic acid bacteria, thus strongly supporting our hypothesis that G55GPT is a member of a yet-undescribed genus. The fatty acid composition of G55GPT differed from that of closely related acetic acid bacteria, particularly given the presence of C19 : 1  ω9c/ω11c and the absence of C14 : 0 and C14 : 0 2-OH fatty acids. Strain G55GPT also differed in terms of metabolic features such as its ability to produce acid from d-mannitol, and its inability to produce acetic acid from ethanol or to oxidize glycerol to dihydroxyacetone. Based on the results of combined genomic, phenotypic and phylogenetic characterizations, isolate G55GPT (=LMG 31394T=DSM 111244T) is considered to represent a new species in a new genus, for which we propose the name Entomobacter blattae gen. nov., sp. nov.

2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 268-273 ◽  
Author(s):  
Malka Halpern ◽  
Svetlana Fridman ◽  
Yana Aizenberg-Gershtein ◽  
Ido Izhaki

Pseudomonas flectens Johnson 1956, a plant-pathogenic bacterium on the pods of the French bean, is no longer considered to be a member of the genus Pseudomonas sensu stricto. A polyphasic approach that included examination of phenotypic properties and phylogenetic analyses based on 16S rRNA, rpoB and atpD gene sequences supported the transfer of Pseudomonas flectens Johnson 1956 to a new genus in the family Enterobacteriaceae as Phaseolibacter flectens gen. nov., comb. nov. Two strains of Phaseolibacter flectens were studied (ATCC 12775T and LMG 2186); the strains shared 99.8 % sequence similarity in their 16S rRNA genes and the housekeeping gene sequences were identical. Strains of Phaseolibacter flectens shared 96.6 % or less 16S rRNA gene sequence similarity with members of different genera in the family Enterobacteriaceae and only 84.7 % sequence similarity with Pseudomonas aeruginosa LMG 1242T, demonstrating that they are not related to the genus Pseudomonas . As Phaseolibacter flectens formed an independent phyletic lineage in all of the phylogenetic analyses, it could not be affiliated to any of the recognized genera within the family Enterobacteriaceae and therefore was assigned to a new genus. Cells were Gram-negative, straight rods, motile by means of one or two polar flagella, fermentative, facultative anaerobes, oxidase-negative and catalase-positive. Growth occurred in the presence of 0–60 % sucrose. The DNA G+C content of the type strain was 44.3 mol%. On the basis of phenotypic properties and phylogenetic distinctiveness, Pseudomonas flectens Johnson 1956 is transferred to the novel genus Phaseolibacter gen. nov. as Phaseolibacter flectens gen. nov., comb. nov. The type strain of Phaseolibacter flectens is ATCC 12775T  = CFBP 3281T  = ICMP 745T  = LMG 2187T  = NCPPB 539T.


Author(s):  
Qing Liu ◽  
Lei-Lei Yang ◽  
Hong-Can Liu ◽  
Guo-Qing Zhang ◽  
Yu-Hua Xin

A novel Gram-stain-negative, rod-shaped, yellow bacterium, designated as LB1R16T, was isolated from the Laigu glacier on the Tibetan Plateau, PR China. Strain LB1R16T was catalase-positive, oxidase-negative and grew at 0–28 °C, pH 6.0–8.0 and in the absence of NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain LB1R16T belongs to the family Sphingosinicellaceae but formed an independent lineage. The highest level of 16S rRNA gene sequence similarities were found to Polymorphobacter arshaanensis DJ1R-1T (95.24 %), Sphingoaurantiacus capsulatus YLT33T (94.78 %) and Sandarakinorhabdus limnophila DSM 17366T (94.67 %). The genomic DNA G+C content was 68.8 mol%. The main cellular fatty acids were summed feature 8 (C18 : 1  ω7c/C18 : 1  ω6c), summed feature 3 (C16 : 1  ω7c/C16 : 1  ω6c), C16 : 0 and C12 : 0-OH. The respiratory quinone was ubiquinone-10. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, one sphingoglycolipid, one unidentified aminolipid, one unidentified phospholipid and two unidentified polar lipids, which were different from the type strains of Polymorphobacter arshaanensis , Sphingoaurantiacus capsulatus and Sandarakinorhabdus limnophila . Based on a polyphasic approach, a novel species of a new genus, Glacieibacterium frigidum gen. nov., sp. nov., within the family Sphingosinicellaceae is proposed. The type strain is LB1R16T (=CGMCC 1.11941T=NBRC 113873T).


2012 ◽  
Vol 62 (Pt_9) ◽  
pp. 2163-2168 ◽  
Author(s):  
Yong-Taek Jung ◽  
Ji-Hoon Kim ◽  
So-Jung Kang ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-staining-negative, non-flagellated, non-gliding and pleomorphic bacterial strain, designated DPG-25T, was isolated from seawater in a seaweed farm in the South Sea in Korea and its taxonomic position was investigated by using a polyphasic approach. Strain DPG-25T grew optimally at 25 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. Flexirubin-type pigments were not produced. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DPG-25T formed a cluster with the type strains of Actibacter sediminis , Aestuariicola saemankumensis and Lutimonas vermicola . Strain DPG-25T exhibited 16S rRNA gene sequence similarity values of 95.3, 93.1 and 93.6 % to the type strains of Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola , respectively. Strain DPG-25T contained MK-6 as the predominant menaquinone and iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. The major polar lipids detected in strain DPG-25T were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content was 39.9 mol%. Differential phenotypic properties and the phylogenetic distinctiveness of strain DPG-25T demonstrated that this strain is distinguishable from Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola . On the basis of the data presented here, strain DPG-25T represents a novel species in a novel genus of the family Flavobacteriaceae , for which the name Namhaeicola litoreus gen. nov., sp. nov. is proposed. The type strain of Namhaeicola litoreus is DPG-25T ( = KCTC 23702T  = CCUG 61485T).


Author(s):  
Zhaobin Huang ◽  
Xiaomei Wei ◽  
Qiliang Lai ◽  
Shiyong Chen ◽  
Jianjun Yuan

Two marine bacterial strains, designated S2-4-21T and MT2-5-19, were isolated from two tidal flat sediments of cordgrass Spartina alterniflora and adjacent oyster culture field in Quanzhou bay, China, respectively. Both strains were Gram-staining-negative, rod-shaped, non-flagellated, non-motile, aerobic, had NaCl requirements, and contained carotenoid and flexirubin pigments. The 16S rRNA gene sequence similarity (99.8%), average nucleotide identity value (99.4%) and average amino acid identity (99.3%) between strain S2-4-21T and strain MT2-5-19 strongly supported that they belonged to a single species. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S2-4-21T and strain MT2-5-19 formed a monophyletic branch affiliated to the family Flavobacteriaceae , sharing similarities of 94.6% with Euzebyella marina CY01T and E. saccharophila 7SM30T, and of 94.1 and 92.8% with E. algicola MEBiC 12267T and Pseudozobellia thermophile DSM 19858T, respectively. Phylogenomic analysis based on the whole genome sequences supported that the two strains formed a distinct monophyletic clade within Flavobacteriaceae members, which was phylogenetically different from the clades of Euzebyella and Pseudozobellia . The major respiratory quinone was menaquinone MK-6. The major fatty acids (>10%) consisted of C15 : 0 iso, C16 : 0, summed feature 9 (C17 : 1 iso ω9c/C16 : 0 10-methyl) and C17 : 0 iso 3-OH. The polar lipid profiles of strain S2-4-21T and strain MT2-5-19 are identical, including phosphatidylethanolamine, four unidentified aminolipids, and four unidentified lipids. The genomic size was 4.9–5.0 Mb with genomic DNA G+C content of 41.5 mol%. Based on the above characteristics, strains S2-4-21T and MT2-5-19 represented a novel species of a novel genus in the family Flavobacteriaceae . Thus, Pareuzebyella sediminis gen. nov. sp. nov. is proposed with type strain S2-4-21T (=MCCC 1K03818T=KCTC 72152T), and another strain MT2-5-19 (=KCTC 72539=MCCC 1K03874).


Author(s):  
Yajun Ge ◽  
Bin Wang ◽  
Jing Yang ◽  
Xin-He Lai ◽  
Gui Zhang ◽  
...  

Four novel strains isolated from the cloacal contents of snow finches (Montifringilla taczanowskii) were characterized as aerobic, Gram-stain-negative, slightly motile, and rod-shaped. Analysis of the 16S rRNA gene sequence revealed that strain CF-458T had the highest similarities of 96.9 and 96.4 % with Limnobaculum parvum HYN0051T and Pragia fontium DSM 5563T, while strain CF-1111T shared the highest similarities of 96.4 and 96.1 % with Pantoea rodasii LMG 26273T and Pectobacterium punjabense SS95T. Phylogenomic analysis showed the four isolates were separated into group Ⅰ (CF-458T and CF-917) and group Ⅱ (CF-1111T and CF-509), and clustered independently in the vicinity of the genera Limnobaculum and Pragia . Summed feature 3 (C16 : 1  ω7c and/or C16 : 1  ω6c, 23.9 and 17.2 %, respectively), C16 : 0 (21.8 and 22.1 %, respectively) and C14 : 0 (10.6 and 17.7 %, respectively) were the common major fatty acids, and summed feature 8 (C18 : 1  ω7c and/or C18 : 1  ω6c, 12.3 %) was also a major fatty acid for strain CF-458T while cyclo-C17 : 0 (13.1%) was for strain CF-1111T. Both had Q-8 as the sole quinone and contained phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol as the major polar lipids. The DNA G+C content of strains CF-458T and CF-1111T was 45.7 and 45.4 mol%, respectively. Based on taxonomic position in the phylogenomic tree and phenotypic properties, two novel species of a new genus within the family Budviciaceae are thus proposed, with the name Jinshanibacter gen. nov., zhutongyuii sp. nov. (type strain CF-458T=CGMCC 1.16483T=GDMCC 1.1586T=JCM 33489T) and Jinshanibacter xujianqingii sp. nov. (type strain CF-1111T=CGMCC 1.16786T=GDMCC 1.1587T=JCM 33490T), respectively.


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1083-1088 ◽  
Author(s):  
Kai Chen ◽  
Shu-Kun Tang ◽  
Guang-Li Wang ◽  
Guo-Xing Nie ◽  
Qin-Fen Li ◽  
...  

Bacterial strain 14-2AT, isolated from a long-term DDT-contaminated soil in China, was characterized by using a polyphasic approach to clarify its taxonomic position. Strain 14-2AT was found to be Gram-negative, aerobic, non-spore-forming, non-motile, non-flagellated and rod-shaped. The new isolate was able to grow at 4–42 °C, pH 6.0–9.0 and with 0–5 % NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belongs to the family Sphingobacteriaceae . The 16S rRNA gene sequence of strain 14-2AT showed the highest similarity with Olivibacter oleidegradans TBF2/20.2T (99.4 %), followed by Pseudosphingobacterium domesticum DC-186T (93.8 %), Olivibacter ginsengisoli Gsoil 060T (93.6 %), Olivibacter terrae Jip13T (93.1 %), Olivibacter soli Gsoil 034T (92.8 %) and Olivibacter sitiensis AW-6T (89.6 %). The DNA–DNA hybridization value between strains 14-2AT and O. oleidegradans TBF2/20.2T was 34.45±2.11 %. Strain 14-2AT contained phosphatidylethanolamine, phosphatidylmonomethylethanolamine, aminophospholipid and phosphatidylinositol mannoside as the major polar lipids. The DNA G+C content was 41.2 mol%. MK-7 is the major isoprenoid quinone. Summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), iso-C15 : 0 and iso-C17 : 0 3-OH are the major fatty acids. The phenotypic and chemotaxonomic data confirmed the affiliation of strain 14-2AT to the genus Olivibacter . On the basis of the phylogenetic and phenotypic characteristics, and chemotaxonomic data, strain 14-2AT is considered to represent a novel species of the genus Olivibacter , for which the name Olivibacter jilunii sp. nov. is proposed; the type strain is 14-2AT ( = KCTC 23098T = CCTCC AB 2010105T).


2015 ◽  
Vol 65 (Pt_3) ◽  
pp. 870-878 ◽  
Author(s):  
Karoline Kläring ◽  
Sarah Just ◽  
Ilias Lagkouvardos ◽  
Laura Hanske ◽  
Dirk Haller ◽  
...  

Three strains of an anaerobic, Gram-stain-positive coccobacillus were isolated from the intestines of mice. These strains shared 100 % similarity in their 16S rRNA gene sequences, but were distantly related to any described members of the family Lachnospiraceae (<94 %). The most closely related species with names that have standing in nomenclature were Robinsoniella peoriensis , Ruminococcus gnavus , Blautia producta and Clostridium xylanolyticum . Phylogenetic relationships based on 16S rRNA gene sequence analysis were confirmed by partial sequencing of hsp60 genes. The use of an in-house database search pipeline revealed that the new isolates are most prevalent in bovine gut samples when compared with human and mouse samples for Ruminococcus gnavus and B. producta . All three isolated strains shared similar cellular fatty acid patterns dominated by C16 : 0 methyl ester. Differences in the proportions of C12 : 0 methyl ester, C14 : 0 methyl ester and C18 : 1 cis-11 dimethyl acetal were observed when compared with phylogenetically neighbouring species. The major short-chain fatty acid produced by strain SRB-530-5-HT was acetic acid. This strain tested positive for utilization of d-fructose, d-galacturonic acid, d-malic acid, l-alanyl l-threonine and l-glutamic acid but was negative for utilization of amygdalin, arbutin, α-d-glucose, 3-methyl d-glucose and salicin, in contrast to the type strain of the closest related species Robinsoniella peoriensis . The isolates were not able to use mannitol for growth. Based on genotypic, phenotypic and chemotaxonomic characteristics, we propose to create the new genus and species Murimonas intestini gen. nov., sp. nov. to accommodate the three strains SRB-530-5-HT ( = DSM 26524T = CCUG 63391T) (the type strain of Murimonas intestini), SRB-509-4-S-H ( = DSM 27577 = CCUG 64595) and SRB-524-4-S-H ( = DSM 27578 = CCUG 64594).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1007-1012 ◽  
Author(s):  
Pok Yui Lai ◽  
Li Miao ◽  
On On Lee ◽  
Ling-Li Liu ◽  
Xiao-Jian Zhou ◽  
...  

A slow-growing, strictly aerobic, Gram-negative, coccus bacterial strain, designated KAUST100406-0324T, was isolated from sea-floor sediment collected from the Red Sea, Saudi Arabia. The catalase- and oxidase-positive strain was non-sporulating and only slightly halophilic. Optimum growth occurred at 20–25 °C and at pH values ranging from 7.0 to 8.0. The major cellular fatty acids of the strain were unsaturated C18 : 1ω6c and/or C18 : 1ω7c, C18 : 1ω7c 11-methyl and C16 : 1ω7c and/or C16 : 1ω6c. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine and two unidentified phospholipids. Ubiquinone 10 was the predominant lipoquinone. The DNA G+C content of strain KAUST100406-0324T was 64.0 mol%. Phylogenetic analysis of 16S rRNA gene sequences revealed that the novel strain belonged to the family Rhodobacteraceae of the class Alphaproteobacteria but formed a distinct evolutionary lineage from other bacterial species with validly published names. The 16S rRNA gene sequence of the novel strain was distantly related, but formed a monophyletic cluster with, those of bacteria from two moderately halophilic genera, Hwanghaeicola and Maribius . The similarity of the sequence between the novel strain KAUST100406-0324T and the type strains Hwanghaeicola aestuarii Y26T (accession number FJ230842), Maribius pelagius B5-6T (DQ514326) and Maribius salinus CL-SP27T (AY906863) were 94.5 %, 95.2 % and 95.3 %, respectively. Based on the physiological, phylogenetic and chemotaxonomic characteristics presented in this study, we propose that this strain represents a novel species of a new genus in the family Rhodobacteraceae , for which the name of Profundibacterium mesophilum gen. nov., sp. nov. was proposed, with KAUST100406-0324T ( = JCM 17872T  = NRRL B-59665T) as the type strain.


2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 345-351 ◽  
Author(s):  
Mohammad Ali Amoozegar ◽  
Maryam Bagheri ◽  
Maryam Didari ◽  
Seyed Abolhassan Shahzedeh Fazeli ◽  
Peter Schumann ◽  
...  

A novel Gram-positive, moderately halophilic bacterium, designated strain X4BT, was isolated from soil around the hypersaline lake Aran-Bidgol in Iran and characterized taxonomically using a polyphasic approach. Cells of strain X4BT were motile rods and formed ellipsoidal endospores at a terminal or subterminal position in swollen sporangia. Strain X4BT was a strictly aerobic bacterium, catalase- and oxidase-positive. The strain was able to grow at NaCl concentrations of 0.5–22.5 % (w/v), with optimum growth occurring at 7.5 % (w/v) NaCl. The optimum temperature and pH for growth were 35 °C and pH 7.0. Analysis of 16S rRNA gene sequence revealed that strain X4BT is a member of the family Bacillaceae , constituting a novel phyletic lineage within this family. Highest sequence similarities were obtained with the 16S rRNA gene sequences of the type strains of Sediminibacillus albus (96.0 %), Paraliobacillus ryukyuensis (95.9 %), Paraliobacillus quinghaiensis (95.8 %) and Sediminibacillus halophilus (95.7 %), respectively. The DNA G+C content of this novel isolate was 35.2 mol%. The major cellular fatty acids of strain X4BT were anteiso-C15 : 0 and anteiso-C17 : 0 and its polar lipid pattern consisted of diphosphatidylglycerol, phosphatidylglycerol, two aminolipids, an aminophospholipid and an unknown phospholipid. The isoprenoid quinones were MK-7 (89 %) and MK-6 (11 %). The peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. On the basis of 16S rRNA gene sequence analysis in combination with chemotaxonomic and phenotypic data, strain X4BT represents a novel species in a new genus in the family Bacillaceae , order Bacillales for which the name Saliterribacillus persicus gen. nov., sp. nov. is proposed. The type strain of the type species (Saliterribacillus persicus) is X4BT ( = IBRC-M 10629T = KCTC 13827T).


2012 ◽  
Vol 62 (Pt_6) ◽  
pp. 1331-1336 ◽  
Author(s):  
A. Makhdoumi-Kakhki ◽  
M. A. Amoozegar ◽  
A. Ventosa

A novel red-pigmented halophilic archaeon, strain EB27T, was isolated from Aran-Bidgol salt lake, a hypersaline playa in Iran. Cells of strain EB27T were non-motile and pleomorphic (rods to triangular or disc-shaped). Strain EB27T required at least 2.5 M NaCl and 0.1 M MgCl2 for growth. Optimal growth was achieved at 4 M NaCl and 0.5 M MgCl2. The optimum pH and temperature for growth were pH 7.5 and 40 °C; it was able to grow at pH 6.0–8.0 and 25–50 °C. 16S rRNA gene sequence analysis showed that strain EB27T is a member of the family Halobacteriaceae ; however, levels of 16S rRNA gene sequence similarity were as low as 90.0, 89.3 and 89.1 % to the most closely related haloarchaeal taxa, namely Halalkalicoccus tibetensis DS12T, Halosimplex carlsbadense 2-9-1T and Halorhabdus utahensis AX-2T, respectively. The DNA G+C content of strain EB27T was 61 mol%. Strain EB27T contained phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester, common phospholipids found in haloarchaea, together with two minor phospholipids. The only quinone present was MK-8(II-H2). Physiological, biochemical and phylogenetic differences between strain EB27T and recognized genera of extremely halophilic archaea suggest that this strain represents a novel species in a new genus within the family Halobacteriaceae , for which the name Halovenus aranensis gen. nov., sp. nov. is proposed. The type strain of Halovenus aranensis, the type species of the new genus, is strain EB27T ( = IBRC-M 10015T = CGMCC 1.11001T).


Sign in / Sign up

Export Citation Format

Share Document