Acidovorax antarcticus sp. nov., isolated from a soil sample of Collins Glacier front, Antarctica

Author(s):  
Qiang Xu ◽  
Xiaoya Peng ◽  
Yanhong Wang ◽  
Lu Lu ◽  
Yongping Zhang ◽  
...  

A Gram-stain-negative, rod-shaped, and aerobic bacterium, strain 16-35-5T, was isolated from Collins Glacier front soil from the Fildes Peninsula, Antarctica. The bacterium grew optimally at 28 °C, pH 7.0 and in the presence of 0–4.0 % (w/v) NaCl. On the basis of the results of 16S rRNA gene sequence phylogenetic analyses, it was concluded that 16-35-5T represented a member of the genus Acidovorax and had the highest sequence similarities with Acidovorax anthurii CFBP 3232T (96.48 %). The genome of 16-35-5T is 4.2 Mb long with a DNA G+C content of 66.3 mol%. Average nucleotide identity (ANI) value between the genomes of 16-35-5T and Acidovorax wautersii DSM 27981T, was 85.29 %. Strain 16-35-5T had ubiquinone-8 (Q-8) as the respiratory ubiquinone. The polar lipids of 16-35-5T were consisted of phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The main fatty acids were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c, 25.2 %), summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c, 12.9 %), C16 : 0 (35.2 %), and C17 : 0 cyclo (19.0 %). On the basis of the evidence presented in this study, 16-35-5T should be classified as representing a novel species of the genus Acidovorax , for which the name Acidovorax antarcticus sp. nov., is proposed, with the type strain 16-35-5T (=CCTCC AB 2019325T=KCTC 72915T).

Author(s):  
Shan Jiang ◽  
Feng-Bai Lian ◽  
You-Yang Sun ◽  
Xiao-Kui Zhang ◽  
Zong-Jun Du

A Gram-stain-negative, rod-shaped and facultatively aerobic bacterial strain, designated F7430T, was isolated from coastal sediment collected at Jingzi Wharf in Weihai, PR China. Cells of strain F7430T were 0.3–0.4 µm wide, 2.0–2.6 µm long, non-flagellated, non-motile and formed pale-beige colonies. Growth was observed at 4–40 °C (optimum, 30 °C), pH 6.0–9.0 (optimum, pH 7.5–8.0) and at NaCl concentrations of 1.0–10.0 % (w/v; optimum, 1.0 %). The sole respiratory quinone of strain F7430T was ubiquinone 8 and the predominant cellular fatty acids were summed feature 8 (C18 : 1  ω7c / C18 : 1  ω6c; 60.7 %), summed feature 3 (C16 : 1  ω7c/C16 : 1  ω6c; 30.2 %) and C15 : 0 iso (13.9 %). The polar lipids of strain F7430T consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, one unidentified phospholipid and three unidentified lipids. Results of 16S rRNA gene sequences analyses indicated that this strain belonged to the family Halieaceae and had high sequence similarities to Parahaliea aestuarii JCM 51547T (95.3 %) and Halioglobus pacificus DSM 27932T (95.2 %) followed by 92.9–95.0 % sequence similarities to other type species within the aforementioned family. The rpoB gene sequences analyses indicated that the novel strain had the highest sequence similarities to Parahaliea aestuarii JCM 51547T (82.2 %) and Parahaliea mediterranea DSM 21924T (82.2 %) followed by 75.2–80.5 % sequence similarities to other type species within this family. Phylogenetic analyses showed that strain F7430T constituted a monophyletic branch clearly separated from the other genera of family Halieaceae . Whole-genome sequencing of strain F7430T revealed a 3.3 Mbp genome size with a DNA G+C content of 52.6 mol%. The genome encoded diverse metabolic pathways including the Entner–Doudoroff pathway, assimilatory sulphate reduction and biosynthesis of dTDP-l-rhamnose. Based on results from the current polyphasic study, strain F7430T is proposed to represent a novel species of a new genus within the family Halieaceae , for which the name Sediminihaliea albiluteola gen. nov., sp. nov. is proposed. The type strain of the type species is F7430T (=KCTC 72873T=MCCC 1H00420T).


Author(s):  
Silvio Hering ◽  
Moritz K. Jansson ◽  
Michael E. J. Buhl

A novel species within the genus Eikenella is described, based on the phenotypical, biochemical and genetic characterization of a strain of a facultatively anaerobic, Gram-negative rod-shaped bacterium. Strain S3360T was isolated from the throat swab of a patient sampled during routine care at a hospital. Phylogenetic analyses (full-length 16S rRNA gene and whole-genome sequences) placed the strain in the genus Eikenella , separate from all recognized species but with the closest relationship to Eikenella longinqua (NML 02-A-017T). Eikenella is one of the genera in the HACEK group known to be responsible for rare cases of endocarditis in humans. Until the recent descriptions of Eikenella exigua , Eikenella halliae and Eikenella longinqua , Eikenella corrodens had been the only validly published species in this genus since its description as Bacteroides corrodens in 1958. Unlike these species, strain S3360T is able to metabolize carbohydrates (glucose). The average nucleotide identities of strain S3360T with E. longinqua (NML 02-A-017T) and E. corrodens (NCTC 10596T), the type species of the genus, were 90.5 and 84.7 %, respectively, and the corresponding genome-to-genome distance values were 41.3 and 29.0 %, respectively. The DNA G+C content of strain S3360T was 58.4 mol%. Based on the phenotypical, biochemical and genetic findings, strain S3360T is considered to represent a novel species within the genus Eikenella , for which the name Eikenella glucosivorans sp. nov. is proposed. The type strain is S3360T (DSM 110714T=CCOS 1935T=CCUG 74293T). In addition, an emendation of the genus Eikenella is proposed to include species which are saccharolytic.


Author(s):  
Xiaoya Peng ◽  
Yumin Zhang ◽  
Yijing Lu ◽  
Xueyin Zhou ◽  
Zhourui Wei ◽  
...  

A rod-shaped, yellow-pigmented, Gram-stain-negative, non-motile and aerobic bacterium, designated 7-3AT, was isolated from soil from King George Island, maritime Antarctica, and subjected to a polyphasic taxonomic study. Growth occurred at 4–37 °C (optimum, 20°C) and at pH 5.0–9.0 (optimum, pH 7.0–8.0). Tolerance to NaCl was up to 4 % (w/v) with optimum growth in the absence of NaCl. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 7-3AT represented a member of the family Flavobacteriaceae . Strain 7-3AT showed the highest sequence similarities with Kaistella yonginensis HMD 1043T (96.65 %), Kaistella carnis NCTC 13525T (96.53 %), Kaistella chaponensis DSM 23145T (96.27 %), Kaistella antarctica LMG 24720T (96.13 %) and Kaistella jeonii DSM 17048T (96.06 %). A whole genome-level comparison of 7-3AT with K. jeonii DSM 17048T, K. antarctica LMG 24720T, K. chaponensis DSM 23145T, and Kaistella palustris DSM 21579T revealed average nucleotide identity (ANI) values of 79.03, 82.25, 78.12, and 74.42 %, respectively. The major respiratory isoprenoid quinone was identified as MK-6 and a few ubiquinones Q-10 were identified. In addition, flexirubin-type pigments were absent. The polar lipid profile of 7-3AT was found to contain one phosphatidylethanolamine, six unidentified aminolipids (AL) and two unidentified lipids (L). The G+C content of the genomic DNA was determined to be 34.54 mol%. The main fatty acids were iso-C15 : 0, summed feature 9 (comprising iso-C17 : 1ω9c and/or C16 : 0 10-methyl), anteiso-C15 : 0, iso-C13 : 0 and summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c). On the basis of the evidence presented in this study, a novel species of the genus Kaistella , Kaistella flava sp. nov., is proposed, with the type strain 7-3AT (=CCTCC AB 2016141T= KCTC 52492T). Emended descriptions of Kaistella yonginensis , Kaistella jeonii , Kaistella antarctica and Kaistella chaponensis are also given.


2012 ◽  
Vol 62 (Pt_7) ◽  
pp. 1647-1652 ◽  
Author(s):  
Akio Tani ◽  
Nurettin Sahin ◽  
Kazuhide Kimbara

A pink-pigmented, facultatively methylotrophic bacterium, strain 35aT, was isolated from the leaves of Oxalis corniculata. Cells of strain 35aT were Gram-reaction-negative, motile, non-spore-forming rods. The highest 16S rRNA gene pairwise sequence similarities for strain 35aT were found with the strains of Methylobacterium iners 5317S-33T (96.7 %), ‘Methylobacterium soli’ YIM 48816 (96.6 %) and Methylobacterium jeotgali S2R03-9T (96.3 %). 16S rRNA gene sequence similarities with the type strains of all other recognized species of the genus Methylobacterium were below 96 %. Major cellular fatty acids were C18 : 1ω7c, C18 : 0 and C16 : 0. The results of DNA–DNA hybridization experiments, analysis of cpn60 gene sequences, fatty acid profiles, whole-cell MALDI-TOF/MS spectral pattern analysis, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 35aT from its nearest phylogenetic neighbours. Strain 35aT is therefore considered to represent a novel species within the genus Methylobacterium , for which the name Methylobacterium oxalidis sp. nov. is proposed. The type strain is 35aT ( = DSM 24028T = NBRC 107715T).


2020 ◽  
Vol 70 (10) ◽  
pp. 5439-5444 ◽  
Author(s):  
Jae-Yun Lee ◽  
Woorim Kang ◽  
Pil Soo Kim ◽  
So-Yeon Lee ◽  
Na-Ri Shin ◽  
...  

A novel Gram-stain-positive, non-motile, non-spore-forming, coccobacillus-shaped, strictly aerobic bacterium, designated strain H23T48T, was isolated from the faecal sample of an oriental stork collected from the Seoul Grand Park Zoo in Seoul, Republic of Korea. Optimal growth of strain H23T48T was observed at 30–37 °C, pH 8 and with 3 % (w/v) NaCl. 16S rRNA gene sequence-based phylogenetic analysis revealed that strain H23T48T was closely related to the genus Flaviflexus , with 97.0 and 96.7 % sequence similarities to Flaviflexus salsibiostraticola EBR4-1-2T and Flaviflexus huanghaiensis H5T, respectively. Strain H23T48T possessed MK-9(H4) as the major menaquinone and C16 : 0 (42.4 %), C18 : 1  ω9c (31.3 %) and C14 : 0 (17.7 %) as the major cellular fatty acids. The polar lipids included phosphatidylglycerol, two unidentified lipids, six unidentified phospholipids and two unidentified glycophospholipids. The amino acid composition of the cell-wall peptidoglycan was l-alanine, l-lysine, d-glutamic acid, l-aspartic acid and glycine. The genomic G+C content of strain H23T48T is 59.5 mol% and the average nucleotide identity value between H23T48T and F. salsibiostraticola KCT C33148T (=EBR4-1-2T) is 75.5 %. Based on the obtained data, strain H23T48T represents a novel species of the genus Flaviflexus , for which the name Flaviflexus ciconiae sp. nov. is proposed. The type strain is H23T48T (=KCTC 49253T=JCM 33282T).


2012 ◽  
Vol 62 (Pt_11) ◽  
pp. 2602-2607 ◽  
Author(s):  
Akio Tani ◽  
Nurettin Sahin ◽  
Kazuhide Kimbara

A pink-pigmented, facultatively methylotrophic bacterium, strain 23eT, was isolated from the leaves of Gnaphalium spicatum (cudweed). The cells of strain 23eT were Gram-reaction negative, motile and non-spore-forming rods. On the basis of 16S rRNA gene sequence similarities, strain 23eT was related to Methylobacterium organophilum ATCC 27886T (97.1 %) and Methylobacterium marchantiae JT1T (97 %), and the phylogenetic similarities to all other Methylobacterium species with validly published names were less than 97 %. Major cellular fatty acids were C18 : 1ω7c, C16 : 00 and C18 : 0. The results of DNA–DNA hybridization, phylogenetic analyses based on 16S rRNA and cpn60 gene sequences, fatty acid profiles, whole-cell matrix-assisted laser desorption/ionization time of flight/MS analysis, physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 23eT from the phylogenetically closest relatives. We propose that strain 23eT represents a novel species within the genus Methylobacterium , for which the name Methylobacterium gnaphalii sp. nov. is proposed. The type strain is 23eT ( = DSM 24027T = NBRC 107716T).


Author(s):  
Minchung Kang ◽  
Geeta Chhetri ◽  
Jiyoun Kim ◽  
Inhyup Kim ◽  
Taegun Seo

A Gram-stain-negative, aerobic and non-motile bacterium, strain sand1-3T, was isolated from beach sand collected from Haeundae Beach located in Busan, Republic of Korea. Based on the results of 16S rRNA gene sequence and phylogenetic analyses, Sphingomonas daechungensis CH15-11T (97.0 %), Sphingomonas edaphi DAC4T (96.8 %), Sphingomonas xanthus AE3T (96.5 %) and Sphingomonas oryziterrae YC6722T (96.0 %) were selected for comparing phenotypic and chemotaxonomic characteristics. Cells of strain sand1-3T grew at 7–50 °C (optimum, 30–35 °C), pH 5.0–8.0 (optimum, pH 7.0–8.0) and in the presence of 0–0.5 % (w/v) NaCl (optimum, 0 %). Major polar lipids included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid, one unidentified glycolipid and one unidentified phosphoglycolipid. The major fatty acids were summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c) and C18 : 1 2-OH. Moreover, the sole respiratory quinone and major polyamine were identified as ubiquinone-10 and homospermidine, respectively. The genomic DNA G+C content was 65.9 mol%. The digital DNA–DNA hybridization, average nucleotide identity and average amino acid identity values of strain sand1-3T and its reference strains with publicly available genomes were 17.9–18.9 %, 72.0–75.3 % and 63.3–76.5 % respectively. Based on polyphasic evidence, we propose Sphingomonas sabuli sp. nov. as a novel species within the genus Sphingomonas . The type strain is sand1-3T (=KCTC 82358T=NBRC 114538T).


2014 ◽  
Vol 64 (Pt_7) ◽  
pp. 2503-2507 ◽  
Author(s):  
Jae-Chan Lee ◽  
Kyung-Sook Whang

A novel strain designated Wo-34T was isolated from bamboo (Phyllostachys bambusoides) litter. Cells were Gram-stain-negative, non-motile, catalase-negative and oxidase-positive rods. The isolate grew aerobically at 15–35 °C (optimum 28 °C), pH 4.0–9.0 (optimum pH 7.0) and in the presence of 0–1.0 % (w/v) NaCl (optimum 0.1 % NaCl). Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain Wo-34T belonged to the genus Reyranella with the sequence similarities of 97.9 % and 97.3 % to the other species of the genus Reyranella , Reyranella massiliensis 521T and Reyranella soli KIS14-15T, respectively. The predominant ubiquinone was Q-10. Major fatty acids were C18 : 1ω7c, C18 : 1 2-OH and C19 : 0 cyclo ω8c. The polar lipids contained phosphatidylmonomethylethanolamine, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unknown aminolipid, unidentified phospholipids and unknown lipids. DNA–DNA relatedness values between strain Wo-34T and R. massiliensis DSM 23428T and R. soli KACC 13034T were 35 % and 29 %, respectively. On the basis of polyphasic analysis from this study, strain Wo-34T represents a novel species of the genus Reyranella for which the name Reyranella graminifolii sp. nov. is proposed. The type strain is Wo-34T ( = KACC 17605T = NBRC 109813T).


2014 ◽  
Vol 64 (Pt_1) ◽  
pp. 78-82 ◽  
Author(s):  
Taeyang Kwon ◽  
Kiwoon Baek ◽  
Kiyoung Lee ◽  
Ilnam Kang ◽  
Jang-Cheon Cho

A Gram-staining-negative, chemoheterotrophic, yellow-pigmented, gliding, catalase- and oxidase-positive, flexirubin-negative, strictly aerobic bacterium, designated strain IMCC9485T, was isolated from a seawater sample collected from the Arctic Ocean. Optimal growth of strain IMCC9485T was observed at 25 °C, pH 7–8 and in the presence of 1.5–2.5 % NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain IMCC9485T belonged to the genus Formosa and was closely related to Formosa algae KCTC 12364T (98.2 %) and Formosa agariphila KCTC 12365T (98.0 %). DNA–DNA relatedness between the new isolate and F. algae and F. agariphila was far lower than 70 %, which indicated that strain IMCC9485T is a novel genomic species of the genus Formosa . The major fatty acids (>10 %) were iso-C15 : 1G (13.7 %), C16 : 1ω7c and/or C16 : 1ω6c (13.4 %) and iso-C15 : 0 (12.3 %). The G+C content of the genomic DNA was 37.6 mol%. Strain IMCC9485T contained menaquinone-6 (MK-6) as the respiratory quinone and phosphatidylethanolamine, unknown aminophospholipids and unknown polar lipids as polar lipid constituents. On the basis of phylogenetic analyses and differential phenotypic characteristics, it is suggested that strain IMCC9485T ( = KACC 17484T = KCCM 42937T = NBRC 106080T) be assigned to the genus Formosa as the type strain of a novel species, for which the name Formosa arctica sp. nov. is proposed.


2012 ◽  
Vol 62 (Pt_6) ◽  
pp. 1354-1358 ◽  
Author(s):  
Sooyeon Park ◽  
Ki-Hoon Oh ◽  
Soo-Young Lee ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-stain-negative, aerobic, non-flagellated, non-spore-forming, motile (by gliding) bacterial strain, designated M-M6T, was isolated from marine sand of Geoje island, Korea. Strain M-M6T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 2 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain M-M6T fell within the clade comprising Cellulophaga species, forming a coherent cluster with Cellulophaga lytica ATCC 23178T and Cellulophaga fucicola NN015860T, with which it shared 16S rRNA gene sequence similarities of 98.1 and 98.2 %, respectively. Sequence similarities between strain M-M6T and the type strains of other recognized Cellulophaga species were in the range 92.4–93.8 %. Strain M-M6T contained MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 3-OH, and C16 : 1ω7c and/or iso-C15 : 0 2-OH as the major fatty acids. The major polar lipids detected in strain M-M6T and the type strains of C. lytica and C. fucicola were two unidentified lipids, one unidentified aminolipid and one unidentified aminophospholipid. The DNA G+C content of strain M-M6T was 35.4 mol%. Levels of DNA–DNA relatedness between strain M-M6T and C. lytica JCM 8516T and C. fucicola JCM 21778T were 33 and 35 %, respectively. Differential phenotypic properties and phylogenetic and genetic distinctiveness distinguished strain M-M6T from all recognized Cellulophaga species. On the basis of the data presented, strain M-M6T is considered to represent a novel species of the genus Cellulophaga , for which the name Cellulophaga geojensis sp. nov. is proposed. The type strain is M-M6T ( = KCTC 23498T = CCUG 60801T).


Sign in / Sign up

Export Citation Format

Share Document