Permianibacter fluminis sp. nov., isolated from a freshwater stream

Author(s):  
Miri S. Park ◽  
Jaeho Song ◽  
Jaeho Chang ◽  
Yochan Joung ◽  
Ilnam Kang ◽  
...  

A Gram-stain-negative, aerobic, non-motile and rod-shaped bacterium, designated as IMCC34836T, was isolated from a freshwater stream. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain IMCC34836T was most closely related to Permianibacter aggregans HW001T (of the family Pseudomonadaceae ) with 95.6 % sequence similarity and formed a robust clade with P. aggregans HW001T. The draft genome sequence of strain IMCC34836T was 4.4 Mbp in size with 59.1 mol% DNA G+C content. Average nucleotide identity and digital DNA–DNA hybridization values between strain IMCC34836T and P. aggregans HW001T were 71.2 and 22.0 %, respectively, indicating that the new strain represents a novel species. The strain contained iso-C15 : 0, summed feature 3 (C16 : 1  ω6c and/or C16 : 1  ω7c) and summed feature 9 (iso-C17 : 1  ω9c and/or C16 : 1 10-methyl) as the major fatty acids and harboured phosphatidylethanolamine, two unidentified aminophospholipids and three unidentified lipids as major polar lipids. The isoprenoid quinone detected in the strain was ubiquinone-8. Based on the phylogenetic and phenotypic characteristics, strain IMCC34836T is considered to represent a novel species of the genus Permianibacter , for which the name Permianibacter fluminis sp. nov. is proposed. The type strain is IMCC34836T (=KACC 21755T=NBRC 114416T).

Author(s):  
Md. Amdadul Huq ◽  
Muhammad Zubair Siddiqi ◽  
Sri Renukadevi Balusamy ◽  
M. Mizanur Rahman ◽  
Md Ashrafudoulla ◽  
...  

A Gram-stain-negative, aerobic and rod-shaped novel bacterial strain, designated MAH-26T, was isolated from rhizospheric soil of a pine tree. The colonies were orange coloured, smooth, spherical and 0.7–1.8 mm in diameter when grown on Reasoner's 2A (R2A) agar for 2 days. Strain MAH-26T was able to grow at 10–40 °C, at pH 6.0–9.0 and with 0–1.0 % NaCl. Cell growth occurred on nutrient agar, R2A agar, tryptone soya agar and Luria–Bertani agar. The strain gave positive results in oxidase and catalase tests. Strain MAH-26T was closely related to Flavihumibacter sediminis CJ663T and Parasegetibacter terrae SGM2-10T with a low 16S rRNA gene sequence similarity (92.8 and 92.9 %, respectively) and phylogenetic analysis indicated that the strain formed a distinct phylogenetic lineage from the members of the closely related genera of the family Chitinophagaceae . Strain MAH-26T has a draft genome size of 6 857 405 bp, annotated with 5173 protein-coding genes, 50 tRNA and two rRNA genes. The genomic DNA G+C content was 41.5 mol%. The predominant isoprenoid quinone was menaquinone 7. The major fatty acids were identified as iso-C15:0, iso-C15:1 G and iso-C17:0 3OH. On the basis of phylogenetic inference and phenotypic, chemotaxonomic and molecular properties, strain MAH-26T represents a novel species of a novel genus of the family Chitinophagaceae , for which the name Pinibacter aurantiacus gen. nov., sp. nov. is proposed. The type strain of Pinibacter aurantiacus is MAH-26T (=KACC 19749T=CGMCC 1.13701T).


2014 ◽  
Vol 64 (Pt_4) ◽  
pp. 1351-1358 ◽  
Author(s):  
Sung-Hyun Yang ◽  
Hyun-Seok Seo ◽  
Jung-Hee Woo ◽  
Hyun-Myung Oh ◽  
Hani Jang ◽  
...  

Two facultatively anaerobic mesophilic bacteria, strains MEBiC 07026T and MEBiC 08903T, were isolated from two different tidal flat sediments and both strains showed approximately 92.2 % 16S rRNA gene sequence similarity with [Cytophaga] fermentans DSM 9555T. 16S rRNA gene sequence similarity between the two new isolates was 97.5 % but levels of DNA–DNA relatedness between the two were 31.3–31.8 %. Phylogenetic analysis revealed that the two isolates and [Cytophaga] fermentans DSM 9555T were affiliated with the family Marinilabiliaceae in the class Bacteroidia . The dominant fatty acids of strains MEBiC 07026T, MEBiC 08903T and [Cytophaga] fermentans DSM 9555T were branched-type or hydroxylated C15 : 0, but [Cytophaga] fermentans DSM 9555T contained a higher proportion of anteiso-branched fatty acids. The two new isolates contained a markedly higher proportion of monounsaturated fatty acids than other members of the family Marinilabiliaceae . The major respiratory quinone of the strains was MK-7. Strains MEBiC07026T and MEBiC08903T utilized a wide range of carboxylic acids whereas [Cytophaga] fermentans DSM 9555T utilized carbohydrates rather than carboxylic acids. The DNA G+C content of the novel strains was about 44 mol% but that of [Cytophaga] fermentans DSM 9555T revealed from the genome sequence was 37.6 mol%. Based on evidence from this polyphasic taxonomic study, a novel genus, Carboxylicivirga gen. nov., is proposed in the family Marinilabiliaceae with two novel species, Carboxylicivirga mesophila sp. nov. with type strain MEBiC 07026T ( = KCCM 42978T = JCM 18290T) and Carboxylicivirga taeanensis sp. nov. with type strain MEBiC 08903T ( = KCCM 43024T = JCM 19490T). Additionally, [Cytophaga] fermentans DSM 9555T ( = ATCC 19072T) is reclassified as Saccharicrinis fermentans gen. nov., comb. nov.


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 905-912 ◽  
Author(s):  
Yeon-Ju Kim ◽  
Ngoc-Lan Nguyen ◽  
Hang-Yeon Weon ◽  
Deok-Chun Yang

A Gram-negative bacterium, designated DCY13T, was isolated from soil of a ginseng field in South Korea. Comparative analysis of 16S rRNA gene sequences showed that strain DCY13T shared the highest sequence similarity (95.0 %) with Sediminibacterium salmoneum NBRC 103935T and 87.6–91.4 % sequence similarity with other members of the family Chitinophagaceae . Cells were non-spore-forming rods, catalase- and oxidase-positive, motile by gliding and facultatively anaerobic. The only respiratory quinone was menaquinone 7 (MK-7) and the major fatty acids were iso-C17 : 0 3-OH, iso-C15 : 0 and iso-C15 : 1 G. The G+C content of the genomic DNA was 47.5±1.0 mol%. In addition to phosphatidylethanolamine, the major polar lipids were two unidentified aminophospholipids, one unidentified aminolipid and three unidentified polar lipids. The major cell-wall sugars were ribose, xylose and galactose. It is proposed that strain DCY13T represents a novel species in the genus Sediminibacterium , for which the name Sediminibacterium ginsengisoli sp. nov. is proposed. The type strain is DCY13T ( = KCTC 12833T  = JCM 15794T  = DSM 22335T). Emended descriptions of the genus Sediminibacterium and of Sediminibacterium salmoneum are also proposed.


2012 ◽  
Vol 62 (Pt_12) ◽  
pp. 2835-2843 ◽  
Author(s):  
Hong Chen ◽  
Mareike Jogler ◽  
Manfred Rohde ◽  
Hans-Peter Klenk ◽  
Hans-Jürgen Busse ◽  
...  

‘ Caulobacter leidyi ’ DSM 4733T has been shown to be affiliated with the family Sphingomonadaceae instead of the Caulobacteraceae , and due to its poor characterization has been omitted from the current edition of Bergey’s Manual of Systematic Bacteriology and removed to limbo. We isolated a novel sphingoglycolipid-containing dimorphic prosthecate bacterium, designated strain 247, from a pre-alpine freshwater lake. Strain 247 and ‘ Caulobacter leidyi ’ DSM 4733T were characterized in detail. The rod-shaped cells were Gram-stain-negative, aerobic, catalase- and oxidase-positive, and formed a stalk or polar flagellum. Both strains grew optimally at 28–30 °C, and pH 6.0–8.0. The major fatty acids were C18 : 1ω7c, C16 : 0 and 11-methyl C18 : 1ω7c. C14 : 0 2-OH represents the major 2-hydroxy fatty acid. Q-10 was the major respiratory quinone and the major polar lipids were diphosphatidylglycerol, phosphatidyldimethylethanolamine, phosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, phosphatidylcholine, three glycolipids, two phosphoaminolipids and two unidentified sphingoglycolipids. The major polyamine was sym-homospermidine. The G+C content of genomic DNA of strains 247 and DSM 4733T was 67.6 mol% and 67.0 mol%, respectively. According to 16S rRNA gene sequence analysis and DNA–DNA hybridization, strains DSM 4733T and 247 were phylogenetically closely related (99.6 % 16S rRNA gene sequence similarity, 82.9 % DNA–DNA hybridization value) and affiliated to the genus Sphingomonas . The closest recognized species was Sphingomonas aquatilis DSM 15581T (98.1 % sequence similarity). In addition, the presence of cystine arylamidase, absence of β-galactosidase, and the inability to utilize l-arabinose, galactose and sucrose distinguished strains DSM 4733T and 247 from most other members of the family Sphingomonadaceae . So far, the dimorphic life cycle that involves a prosthecate and a flagellated stage is unique for strains DSM 4733T and 247 among all members of the family Sphingomonadaceae . Therefore, Caulobacter leidyi is reclassified as Sphingomonas leidyi, with the type strain DSM 4733T ( = ATCC 15260T = CIP 106443T = VKM B-1368T) and strain 247 (DSM 25078 = LMG 26658) as an additional strain of this species.


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1297-1303 ◽  
Author(s):  
Keun Sik Baik ◽  
Han Na Choe ◽  
Seong Chan Park ◽  
Yeoung Min Hwang ◽  
Eun Mi Kim ◽  
...  

Two yellow-pigmented, Gram-reaction-negative strains, designated 01SU5-PT and 03SU3-PT, were isolated from the freshwater of Woopo wetland, Republic of Korea. Both strains were aerobic, non-motile and catalase-negative. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the two isolates belong to the genus Sphingopyxis , showing the highest level of sequence similarity with respect to Sphingopyxis witflariensis W-50T (95.4–95.7 %). The two novel isolates shared 99.4 % sequence similarity. DNA–DNA hybridization between the isolates and the type strain of S. witflariensis clearly suggested that strains 01SU5-PT and 03SU3-PT represent two separate novel species in the genus Sphingopyxis . The two strains displayed different fingerprints after PCR analysis using the repetitive primers BOX, ERIC and REP. Several phenotypic characteristics served to differentiate these two isolates from recognized members of the genus Sphingopyxis . The data from the polyphasic study presented here indicated that strains 01SU5-PT and 03SU3-PT should be classified as representing novel species in the genus Sphingopyxis , for which the names Sphingopyxis rigui sp. nov. and Sphingopyxis wooponensis sp. nov., respectively, are proposed. The type strain of Sphingopyxis rigui sp. nov. is 01SU5-PT ( = KCTC 23326T = JCM 17509T) and the type strain of Sphingopyxis wooponensis sp. nov. is 03SU3-PT ( = KCTC 23340T = JCM 17547T).


2013 ◽  
Vol 63 (Pt_10) ◽  
pp. 3807-3811 ◽  
Author(s):  
Heung-Min Son ◽  
Jung-Eun Yang ◽  
Eun-Ji Yi ◽  
YongJin Park ◽  
Kyung-Hwa Won ◽  
...  

A Gram-reaction-negative, aerobic, motile by one polar flagellum, yellow-pigmented, rod-shaped bacterium, designated strain THG-B117T, was isolated from soil of a cornus fruit field of Hoengseong province in South Korea and its taxonomic position was investigated by a polyphasic study. Strain THG-B117T grew well at 25–30 °C and at pH 6.0–8.0 in the absence of NaCl on nutrient agar. On the basis of 16S rRNA gene sequence similarity, strain THG-B117T was shown to belong to the family Xanthomonadaceae and be related to Dyella japonica XD53T (98.7 % similarity), Dyella terrae JS14-6T (98.0 %), Dyella koreensis BB4T (96.9 %), Dyella soli JS12-10T (96.9 %) and Dyella thiooxydans ATSB10T (96.7 %). DNA–DNA hybridization experiments showed that DNA relatedness between strain THG-B117T and its phylogenetically closest neighbours was below 45.1 %. The G+C content of the genomic DNA of strain THG-B117T was 64.8 mol%. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, unidentified aminolipids, unidentified aminophospholipids and unidentified phospholipids. Phenotypic and chemotaxonomic data (major ubiquinone was Q-8, and major fatty acids were iso-C15 : 0, iso-C16 : 0, iso-C17 : 0 and iso-C17 : 1ω9c) supported the affiliation of strain THG-B117T with the genus Dyella . The results of physiological and biochemical tests suggested that strain THG-B117T was different genotypically and phenotypically from recognized species of the genus Dyella , and represents a novel species of this genus. The name Dyella kyungheensis sp. nov. is proposed, with the type strain THG-B117T ( = KACC 16981T = JCM 18747T).


2020 ◽  
Vol 70 (9) ◽  
pp. 4927-4934 ◽  
Author(s):  
Juchan Hwang ◽  
Jaeho Song ◽  
Yeonjung Lim ◽  
Yochan Joung ◽  
Jang-Cheon Cho

Two Gram-stain-negative, Fe(III)-reducing, facultatively anaerobic, motile via a single polar flagellum, rod-shaped bacterial strains, designated IMCC35001T and IMCC35002T, were isolated from tidal flat sediment and seawater, respectively. Results of 16S rRNA gene sequence analysis showed that IMCC35001T and IMCC35002T shared 96.6 % sequence similarity and were most closely related to Ferrimonas futtsuensis FUT3661T (98.6 %) and Ferrimonas kyonanensis Asr22-7T (96.8 %), respectively. Draft genome sequences of IMCC35001T and IMCC35002T revealed 4.0 and 4.8 Mbp of genome size with 61.0 and 51.8 mol% of DNA G+C content, respectively. Average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between the two strains were 73.1 and 19.8 %, respectively, indicating that they are separate species. The two genomes showed ≤84.4 % ANI and ≤27.8 % dDDH to other species of the genus Ferrimonas , suggesting that the two strains each represent novel species. The two strains contained both menaquinone (MK-7) and ubiquinones (Q-7 and Q-8). Major fatty acids of strain IMCC35001T were iso-C15 : 0, C18 : 1  ω9c, C17 : 1  ω8c and C16 : 0 and those of strain IMCC35002 T were C18 : 1  ω9c, C16 : 0 and summed feature 3 (C16 : 1  ω7c and/or C16 : 1  ω6c). Major polar lipids in both strains were phosphatidylethanolamine, phosphatidylglycerol, unidentified phospholipid, unidentified aminophospholipid and unidentified lipids. The two strains reduced Fe(III) citrate, Fe(III) oxyhydroxide, Mn(IV) oxide and sodium selenate but did not reduce sodium sulfate. They were also differentiated by several phenotypic characteristics. Based on the polyphasic taxonomic data, IMCC35001T and IMCC35002T were considered to represent each novel species in the genus Ferrimonas , for which the names Ferrimonas sediminicola sp. nov. (IMCC35001T=KACC 21161T=NBRC 113699T) and Ferrimonas aestuarii (IMCC35002T=KACC 21162T=NBRC 113700T) sp. nov. are proposed.


Author(s):  
Shin Ae Lee ◽  
Tae-Wan Kim ◽  
Mee-Kyung Sang ◽  
Jaekyeong Song ◽  
Soon-Wo Kwon ◽  
...  

A Gram-stain-negative, aerobic, non-motile and rod-shaped bacterium, designated KIS59-12T, was isolated from a soil sample collected on Hodo island, Boryeong, Republic of Korea. The strain grew at 10–33 °C, pH 6.0–7.5 and with 0–4 % NaCl (w/v). Results of phylogenetic analysis based on 16S rRNA gene sequences showed that strain KIS59-12T was in the same clade as Arachidicoccus rhizosphaerae Vu-144T and Arachidicoccus ginsenosidivorans Gsoil809T with 97.5 and 97.2 % sequence similarity, respectively. Comparative genome analysis between strain KIS59-12T and A. rhizosphaerae Vu-144T showed that average nucleotide identity value was 69.4 % and the digital DNA–DNA hybridization value was 19.1 %. The major respiratory quinone was menaquinone-7. The major polar lipids were phosphatidylethanolamine and an unknown polar lipid. The predominant cellular fatty acids were iso-C15 : 0, iso-C15 : 1 G and iso-C17 : 0 3-OH, which supported the affiliation of strain KIS59-12T with the genus Arachidicoccus . The major polyamines were homospermidine and putrescine. The genomic DNA G+C content was 36.4 mol%. On the basis of phylogenetic, physiological and chemotaxonomic characteristics, strain KIS59-12T represents a novel species of the genus Arachidicoccus , for which the name Arachidicoccus soli sp. nov. is proposed. The type strain of Arachidicoccus soli is KIS59-12T (=KACC 17340T=NBRC 113161T).


2020 ◽  
Vol 70 (12) ◽  
pp. 6266-6283 ◽  
Author(s):  
Ceshing Sheu ◽  
Zhi-Hao Li ◽  
Shih-Yi Sheu ◽  
Che-Chia Yang ◽  
Wen-Ming Chen

Two Gram-stain-negative, aerobic, non-motile bacteria, designated KMS-5T and CYK-10T, were isolated from freshwater environments. 16S rRNA gene sequence similarity results indicated that these two novel strains belong to the family Rhodobacteraceae . Strain KMS-5T is closely related to species within the genus Tabrizicola (96.1–96.8 % sequence similarity) and Cypionkella (96.5–97.0 %). Strain CYK-10T is closest to Rhodobacter thermarum YIM 73036T with 96.6 % sequence similarity. Phylogenetic analyses based on 16S rRNA gene sequences and an up-to-date bacterial core gene set showed that strain KMS-5T is affiliated with species in the genus Tabrizicola and strain CYK-10T is placed in a distinct clade with Rhodobacter blasticus ATCC 33485T, Rhodobacter thermarum YIM 73036T and Rhodobacter flagellatus SYSU G03088T. These two strains shared common chemotaxonomic features comprising Q-10 as the major quinone, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine as the principal polar lipids, and C18 : 1  ω7c as the main fatty acid. The average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization values between these two novel isolates and their closest relatives were below the cut-off values of 95–96, 90 and 70 %, respectively, used for species demarcation. The obtained polyphasic taxonomic data suggested that strain KMS-5T represents a novel species within the genus Tabrizicola , for which the name Tabrizicola oligotrophica sp. nov. is proposed with KMS-5T (=BCRC 81196T=LMG 31337T) as the type strain, and strain CYK-10T should represent a novel species of the genus Rhodobacter , for which the name Rhodobacter tardus sp. nov. is proposed with CYK-10T (=BCRC 81191T=LMG 31336T) as the type strain.


Author(s):  
Fuxiang Li ◽  
Wenhua Zhao ◽  
Qionghua Hong ◽  
Qingyong Shao ◽  
Jianling Song ◽  
...  

A Gram-stain-negative, non-spore-forming, yellow-pigmented, aerobic, pleomorphic rod-shaped bacterium, designated ZY171143T, was isolated from faeces of a cow with diarrhoea in Wenshan, Yunnan Province, south-west China and its taxonomic position was studied. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZY171143T belonged to the family Weeksellaceae and was most closely related to the only species of the genus Faecalibacter , Faecalibacter macacae CCTCC AB 2016016T with a sequence similarity of 97.8 %. The genomic OrthoANI and digital DNA–DNA hybridization values between the strain and F. macacae CCTCC AB 2016016T were 86.2 and 30.5 %, respectively. The genomic G+C content was 31.1 mol%. The predominant fatty acids (>5 %) were C15 : 0 iso, C17 : 0 iso 3OH, C16 : 0, C16 : 1 ω5c and summed feature 3 (C16 : 1 ω7c and/or 16 : 1 ω6c). The major polar lipids were phosphatidylethanolamine, triacylglycerol and sulfonolipid. The sole respiratory quinone was MK-6. These chemotaxonomic characterizations also revealed that strain ZY171143T was a member of the genus Faecalibacter . Based on the phenotypic, chemotaxonomic and genotypic data, strain ZY171143T represents a novel species within the genus Faecalibacter , for which the name Faecalibacter bovis sp. nov. is proposed. The type strain is ZY171143T (=CGMCC 1.13663T=KCTC 62642T).


Sign in / Sign up

Export Citation Format

Share Document