Crassaminicella thermophila sp. nov., a moderately thermophilic bacterium isolated from a deep-sea hydrothermal vent chimney and emended description of the genus Crassaminicella

Author(s):  
Xue-Gong Li ◽  
Jin Lin ◽  
Shi-Jie Bai ◽  
Jie Dai ◽  
Ze-Xi Jiao ◽  
...  

A novel moderately thermophilic, anaerobic, heterotrophic bacterium (strain SY095T) was isolated from a hydrothermal vent chimney located on the Southwest Indian Ridge at a depth of 2730 m. Cells were Gram-stain-positive, motile, straight to slightly curved rods forming terminal endospores. SY095T was grown at 45–60 °C (optimum 50–55 °C), pH 6.0–7.5 (optimum 7.0), and in a salinity of 1–4.5 % (w/v) NaCl (optimum 2.5 %). Substrates utilized by SY095T included fructose, glucose, maltose, N-acetyl glucosamine and tryptone. Casamino acid and amino acids (glutamate, glutamine, lysine, methionine, serine and histidine) were also utilized. The main end products from glucose fermentation were acetate, H2 and CO2. Elemental sulphur, sulphate, thiosulphate, sulphite, fumarate, nitrate, nitrite and Fe(III) were not used as terminal electron acceptors. The predominant cellular fatty acids were C14 : 0 (60.5%) and C16 : 0 (7.6 %). The main polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, five unidentified phospholipids and two unidentified aminophospholipids. No respiratory quinones were detected. The chromosomal DNA G+C content was 30.8 mol%. The results of phylogenetic analysis of the 16S rRNA gene sequences indicated that SY095T was closely related to Crassaminicella profunda Ra1766HT (95.8 % 16S rRNA gene sequence identity). SY095T exhibited 78.1 % average nucleotide identity (ANI) to C. profunda Ra1766HT. The in silico DNA–DNA hybridization (DDH) value indicated that SY095T shared 22.7 % DNA relatedness with C. profunda Ra1766HT. On the basis of its phenotypic, genotypic and phylogenetic characteristics, SY095T is suggested to represent a novel species of the genus Crassaminicella , for which the name Crassaminicella thermophila sp. nov. is proposed. The type strain is SY095T (=JCM 34213=MCCC 1K04191). An emended description of the genus Crassaminicella is also proposed.

2020 ◽  
Vol 70 (4) ◽  
pp. 2657-2663 ◽  
Author(s):  
Shasha Wang ◽  
Lijing Jiang ◽  
Xuewen Liu ◽  
Suping Yang ◽  
Zongze Shao

Strains 1-1NT and GYSZ_1T were isolated from marine sediments collected from the coast of Xiamen, PR China. Cells of the two strains were Gram-stain-negative, rod-shaped or slightly curved. Strain 1-1NT was non-motile, whereas strain GYSZ_1T was motile by means of one polar flagellum. The temperature, pH and salinity concentration ranges for growth of 1-1NT were 10–45 °C (optimum 30 °C), pH 5.5–8.0 (optimum 7.0) and 0–90 g l−1 NaCl (optimum 50 g l−1), while the growth of GYSZ_1T occurred at 4–45 °C (optimum 33 °C), pH 5.0–8.5 (optimum 6.5) and 5–90 g l−1 NaCl (optimum 20 g l−1). The two novel isolates were obligate chemolithoautotrophs capable of growth using hydrogen, thiosulfate, sulfide or elemental sulfur as the sole energy source, and nitrate, elemental sulfur or molecular oxygen as an electron acceptor. The major fatty acids of 1-1NT were C16 : 1ω7c, C16 : 0, C18 : 1ω7c and C18 : 0, while the predominant fatty acids of strain GYSZ_1T were C16 : 1ω7c, C16 : 0, C18 : 1ω7c and C14 : 0 3-OH. The DNA G+C contents of 1-1NT and GYSZ_1T were 34.5 mol% and 33.2 mol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that 1-1NT and GYSZ_1T represented members of the genus Sulfurimonas , with the highest sequence similarities to Sulfurimonas crateris SN118T (97.4 %) and Sulfurimonas denitrificans DSM 1251T (94.7 %), respectively. However, 1-1NT and GYSZ_1T shared 95.5 % similarity of 16S rRNA gene sequences, representing different species of the genus Sulfurimonas . On the basis of the physiological properties and the results of phylogenetic analyses, including average nucleotide identity and in silico DNA–DNA hybridization values, strains 1-1NT and GYSZ_1T represent two novel species within the genus Sulfurimonas , for which the names Sulfurimonas xiamenensis sp. nov. and Sulfurimonas lithotrophica sp. nov. are proposed, with the type strains 1-1NT (=MCCC 1A14514T=KCTC 15851T) and GYSZ_1T (=MCCC 1A14739T=KCTC 15853T), respectively. Our results also justify an emended description of the genus Sulfurimonas .


2013 ◽  
Vol 63 (Pt_8) ◽  
pp. 2895-2900 ◽  
Author(s):  
Renukaradhya K. Math ◽  
Hyun Mi Jin ◽  
Sang Hyeon Jeong ◽  
Che Ok Jeon

A novel Gram-staining-negative, strictly aerobic bacterium, designated BS14T, was isolated from a marine tidal flat of the South Sea in Korea. Colonies were opaque, white, smooth and circular on marine agar. Cells were moderately halophilic, non-motile rods showing catalase- and oxidase-positive reactions. Growth of strain BS14T was observed at 5–40 °C (optimum: 30 °C), pH 6.5–9.5 (optimum: 7.0–7.5) and 0–10 % (w/v) NaCl (optimum: 1–1.5 %). The G+C content of the genomic DNA was 61.6 mol%. Strain BS14T contained ubiquinone-10 (Q-10) as the sole respiratory quinone and summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c), C18 : 0 3-OH, C10 : 0 3-OH and C18 : 0 as the major fatty acids. The polar lipid pattern comprised phosphatidylethanolamine, diphosphatidylglycerol, an unidentified aminolipid, an unidentified phospholipid and an unidentified polar lipid. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain BS14T formed a tight phylogenetic lineage with Defluviimonas denitrificans D9-3T with a bootstrap value of 100 %. The 16S rRNA gene sequence similarity between strain BS14T and D. denitrificans D9-3T was 97.4 % and their DNA–DNA relatedness was 19.1±3.6 %. Based on the phenotypic and genotypic studies, strain BS14T represents a novel species of the genus Defluviimonas , for which the name Defluviimonas aestuarii sp. nov. is proposed. The type strain is BS14T ( = KACC 16442T = JCM 18630T). An emended description of the genus Defluviimonas Foesel et al. 2011 is also proposed.


2012 ◽  
Vol 62 (Pt_12) ◽  
pp. 2865-2869 ◽  
Author(s):  
Jina Lee ◽  
Na-Ri Shin ◽  
Hae-Won Lee ◽  
Seong Woon Roh ◽  
Min-Soo Kim ◽  
...  

A Gram-negative, motile, facultatively anaerobic rod, designated A36T, was isolated from a dead ark clam found on the south coast of Korea. The isolate was catalase- and oxidase-negative. 16S rRNA gene sequence analysis indicated that strain A36T was most closely related to Kistimonas asteriae KMD 001T, with which it shared 98.2 % 16S rRNA gene sequence similarity. Strain A36T grew optimally at 30–37 °C, with 1 % (w/v) NaCl and at pH 8.0. The major respiratory quinone was ubiquinone-9 (Q-9). The major polar lipids were phosphatidylserine, phosphoethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The major fatty acids were summed feature 3 (comprising C16 : 1ω7c and/or iso-C15 2-OH) and C16 : 0. The genomic DNA G+C content was 47.3 mol%. DNA–DNA relatedness between the isolate and K. asteriae JCM 15607T was <25±3 %. Strain A36T represents a novel species of the genus Kistimonas , for which the name Kistimonas scapharcae sp. nov. is proposed. The type strain is A36T ( = KACC 16204T  = JCM 17805T). An emended description of the genus Kistimonas is also provided.


2012 ◽  
Vol 62 (Pt_6) ◽  
pp. 1359-1364 ◽  
Author(s):  
Soo-Young Lee ◽  
Sooyeon Park ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, ovoid or rod-shaped bacterial strain, designated L-6T, was isolated from seawater of Baekdo harbour of the East Sea in Korea and its taxonomic position was investigated by using a polyphasic study. Strain L-6T grew optimally at 30 °C, at pH 7.5–8.0 and in the presence of 2 % (w/v) NaCl. In the neighbour-joining phylogenetic tree based on 16S rRNA gene sequences, strain L-6T formed a cluster with the type strain of Celeribacter neptunius at a bootstrap resampling value of 100 %. Strain L-6T exhibited 16S rRNA gene sequence similarity values of 97.7 % to C. neptunius H 14T and of less than 96.2 % to the type strains of other species used in the phylogenetic analysis. The G+C content of the chromosomal DNA of strain L-6T was 60.9 mol%. The predominant ubiquinone found in strain L-6T and C. neptunius CIP 109922T was ubiquinone-10 (Q-10). The predominant fatty acid of strain L-6T and C. neptunius CIP 109922T was C18 : 1ω7c. The major polar lipids of strain L-6T were phosphatidylglycerol, one unidentified aminolipid and one unidentified lipid. The mean level of DNA–DNA relatedness between strain L-6T and C. neptunius CIP 109922T was 17 %. Differential phenotypic properties, together with phylogenetic and genetic distinctiveness, demonstrated that strain L-6T is distinguishable from C. neptunius . On the basis of the data presented, strain L-6T is considered to represent a novel species of the genus Celeribacter , for which the name Celeribacter baekdonensis sp. nov. is proposed. The type strain is L-6T ( = KCTC 23497T  = CCUG 60799T).


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1329-1334 ◽  
Author(s):  
Yong-Taek Jung ◽  
Jung-Hoon Yoon

A Gram-negative, non-spore-forming, non-flagellated, motile-by-gliding rod, designated SSK2-3T, was isolated from the junction between seawater and a freshwater spring at Jeju island, South Korea. Strain SSK2-3T grew optimally at 25–30 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SSK2-3T clustered with type strains of species of the genus Mariniflexile , with which it exhibited 97.2–97.8 % 16S rRNA gene sequence similarity. Sequence similarity between the isolate and the other strains used in the phylogenetic analysis was <95.6 %. Strain SSK2-3T contained MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C15 : 1 G and C15 : 0 as the major fatty acids. The major polar lipids of strain SSK2-3T were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content of strain SSK2-3T was 32.4 mol%. DNA–DNA relatedness between the isolate and Mariniflexile gromovii KCTC 12570T, Mariniflexile fucanivorans DSM 18792T and Mariniflexile aquimaris HWR-17T was 19, 15 and 20 %, respectively. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain SSK2-3T is separate from other members of the genus Mariniflexile . On the basis of the data presented, strain SSK2-3T is considered to represent a novel species of the genus Mariniflexile , for which the name Mariniflexile jejuense sp. nov. is proposed. The type strain is SSK2-3T ( = KCTC 23958T  = CCUG 62414T). An emended description of the genus Mariniflexile is given.


2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 549-555 ◽  
Author(s):  
O. L. Kovaleva ◽  
A. Yu. Merkel ◽  
A. A. Novikov ◽  
R. V. Baslerov ◽  
S. V. Toshchakov ◽  
...  

Three strains of facultatively aerobic, moderately thermophilic bacteria were isolated from terrestrial hot springs in Baikal Lake region and Kamchatka (Russia). Cells of the new isolates were cocci reproducing by binary fission. The temperature range for growth was between 20 and 56 °C and the pH range for growth from pH 4.5 to 8.5, with optimal growth at 47–50 °C and pH 7.0–7.5. The organisms were chemoheterotrophs preferring sugars and polysaccharides as growth substrates. 16S rRNA gene sequences of strains 2842, 2813 and 2918Kr were nearly identical (99.7–100 % similarity) and indicated that the strains belonged to the phylum Planctomycetes . The phylogenetically closest cultivated relatives were Algisphaera agarilytica 06SJR6-2T and Phycisphaera mikurensis FYK2301M01T with 16S rRNA gene sequence similarity values of 82.4 and 80.3 %, respectively. The novel strains differed from them by higher growth temperature, sensitivity to NaCl concentration above 3.0 % and by their cellular fatty acids profile. On the basis of phylogenetic and physiological data, strains 2842T, 2813 and 2918Kr represent a novel genus and species for which we propose the name Tepidisphaera mucosa sp. nov. The type strain is 2842T ( = VKM B-2832T = JCM 19875T). We also propose that Tepidisphaera gen. nov. is the type genus of a novel family, Tepidisphaeraceae fam. nov. and a novel order, Tepidisphaerales ord. nov.


2012 ◽  
Vol 62 (Pt_4) ◽  
pp. 937-941 ◽  
Author(s):  
Hui Xu ◽  
Yuanyuan Fu ◽  
Ning Yang ◽  
Zhixin Ding ◽  
Qiliang Lai ◽  
...  

Strain WPAGA1T was isolated from marine sediment of the west Pacific Ocean. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belonged to the genus Flammeovirga . Strain WPAGA1T exhibited highest 16S rRNA gene sequence similarity with Flammeovirga yaeyamensis NBRC 100898T (98.1 %) and lower sequence similarity with Flammeovirga arenaria IFO 15982T (94.6 %) and other members of the genus Flammeovirga (<94.2 %). DNA–DNA relatedness studies showed that strain WPAGA1T was distinct from F. yaeyamensis NBRC 100898T and F. arenaria NBRC 15982T (43±4 % and 32±2 % relatedness values, respectively). Strain WPAGA1T could be distinguished from all known members of the genus Flammeovirga by a number of phenotypic features. However, the dominant fatty acids of strain WPAGA1T (iso-C15 : 0, C16 : 0 and C20 : 4ω6,9,12,15c), the major polyamine (cadaverine) and the G+C content of the chromosomal DNA (32.9 mol%) were consistent with those of members of the genus Flammeovirga . Based on phenotypic and chemotaxonomic features and 16S rRNA gene sequences, strain WPAGA1T can be assigned to the genus Flammeovirga as a representative of a novel species, for which the name Flammeovirga pacifica sp. nov. is proposed; the type strain is WPAGA1T ( = CCTCC AB 2010364T = LMG 26175T = DSM 24597T = MCCC 1A06425T).


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3804-3809 ◽  
Author(s):  
Samantha J. Stropko ◽  
Shannon E. Pipes ◽  
Jeffrey D. Newman

While characterizing a related strain, it was noted that there was little difference between the 16S rRNA gene sequences of Bacillus indicus LMG 22858T and Bacillus cibi DSM 16189T. Phenotypic characterization revealed differences only in the utilization of mannose and galactose and slight variation in pigmentation. Whole genome shotgun sequencing and comparative genomics were used to calculate established phylogenomic metrics and explain phenotypic differences. The full, genome-derived 16S rRNA gene sequences were 99.74 % similar. The average nucleotide identity (ANI) of the two strains was 98.0 %, the average amino acid identity (AAI) was 98.3 %, and the estimated DNA–DNA hybridization determined by the genome–genome distance calculator was 80.3 %. These values are higher than the species thresholds for these metrics, which are 95 %, 95 % and 70 %, respectively, suggesting that these two strains should be classified as members of the same species. We propose reclassification of Bacillus cibi as a later heterotypic synonym of Bacillus indicus and an emended description of Bacillus indicus .


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1684-1689 ◽  
Author(s):  
Sooyeon Park ◽  
Jung-Hoon Yoon

A Gram-negative, non-spore-forming, non-flagellated, coccoid-, oval- or rod-shaped strain, designated M-M23T, was isolated from seashore sediment at Geoje island, South Korea. Strain M-M23T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 2 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain M-M23T clustered with the type strains of the two species of the genus Hirschia , with which it exhibited 97.6–98.1 % 16S rRNA gene sequence similarity. Sequence similarity with the type strains of other recognized species was <90.8 %. Strain M-M23T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c and C16 : 0 as the major fatty acids. The major polar lipids of strain M-M23T were phosphatidylglycerol and two unidentified lipids. The DNA G+C content of strain M-M23T was 45.4 mol%. DNA–DNA relatedness between the isolate and Hirschia baltica DSM 5838T and Hirschia maritima JCM 14974T was 22±7.2 and 14±5.6 %, respectively. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain M-M23T is separate from the other described members of the genus Hirschia . On the basis of the data presented, strain M-M23T is considered to represent a novel species of the genus Hirschia , for which the name Hirschia litorea sp. nov. is proposed. The type strain is M-M23T ( = KCTC 32081T  = CCUG 62793T). An emended description of the genus Hirschia is also provided.


2012 ◽  
Vol 62 (Pt_6) ◽  
pp. 1252-1258 ◽  
Author(s):  
Gilberto E. Flores ◽  
Ryan C. Hunter ◽  
Yitai Liu ◽  
Anchelique Mets ◽  
Stefan Schouten ◽  
...  

Thirteen novel, obligately anaerobic, thermoacidophilic bacteria were isolated from deep-sea hydrothermal vent sites. Four of the strains, designated EP5-rT, KM1, Mar08-272rT and Mar08-368r, were selected for metabolic and physiological characterization. With the exception of strain EP5-rT, all strains were short rods that grew between 40 and 72 °C, with optimal growth at 60–65 °C. Strain EP5-rT was more ovoid in shape and grew between 45 and 75 °C, with optimum growth at 60 °C. The pH range for growth of all the isolates was between pH 3.5 and 5.5 (optimum pH 4.5 to 5.0). Strain Mar08-272rT could only grow up to pH 5.0. Elemental sulfur was required for heterotrophic growth on acetate, succinate, Casamino acids and yeast extract. Strains EP5-rT, Mar08-272rT and Mar08-368r could also use fumarate, while strains EP5-rT, KM1 and Mar08-272rT could also use propionate. All isolates were able to grow chemolithotrophically on H2, CO2, sulfur and vitamins. Phylogenetic analysis of 16S rRNA gene sequences placed all isolates within the family Desulfurellaceae of the class Deltaproteobacteria , with the closest cultured relative being Hippea maritima MH2 T (~95–98 % gene sequence similarity). Phylogenetic analysis also identified several isolates with at least one intervening sequence within the 16S rRNA gene. The genomic DNA G+C contents of strains EP5-rT, KM1, Mar08-272rT and Mar08-368r were 37.1, 42.0, 35.6 and 37.9 mol%, respectively. The new isolates differed most significantly from H. maritima MH2 T in their phylogenetic placement and in that they were obligate thermoacidophiles. Based on these phylogenetic and phenotypic properties, the following two novel species are proposed: Hippea jasoniae sp. nov. (type strain Mar08-272rT = DSM 24585T = OCM 985T) and Hippea alviniae sp. nov. (type strain EP5-rT = DSM 24586T = OCM 986T).


Sign in / Sign up

Export Citation Format

Share Document