Systematic analysis of nuclear localization of Autographa californica multiple nucleopolyhedrovirus proteins

Author(s):  
Lihong He ◽  
Wei Shao ◽  
Jiang Li ◽  
Fei Deng ◽  
Hualin Wang ◽  
...  

Baculoviruses are large DNA viruses that replicate within the nucleus of infected host cells. Therefore, many viral proteins must gain access to the nucleus for efficient viral genome replication, gene transcription and virion assembly. To date, the global protein localization pattern of baculoviral proteins is unknown. In this study, we systematically analysed the nuclear localization of 154 ORFs encoded by the prototypic baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV), either during transient expression or with super-infection of the virus. By transient expression of vectors containing egfp-fused ORFs, we found that in the absence of virus infection, 25 viral proteins were localized in the nucleus. Most of these, which we called ‘auto-nuclear localization’ proteins, are related to virus replication, transcription or virion structure, and 20 of them contain predicted classical nuclear localization signal. Upon virus infection, 11 proteins, which originally localized in the cytoplasm or both cytoplasm and nucleus in the transfection assays, were completely translocated into the nucleus, suggesting that their nuclear import is facilitated by other viral or host proteins. Further co-transfection experiments identified that four of the 11 proteins, including P143, P33, AC73 and AC114, were imported into the nucleus with the assistance of the auto-nuclear localization proteins LEF-3 (for P143), TLP (for P33) and VP80 (for both AC73 and AC114). This study presents the first global nuclear localization profile of AcMNPV proteins and provides useful information for further elucidation of the mechanisms of baculovirus nuclear entry and gene functions.

2018 ◽  
Vol 92 (12) ◽  
Author(s):  
Yongli Zhang ◽  
Xue Hu ◽  
Jingfang Mu ◽  
Yangyang Hu ◽  
Yuan Zhou ◽  
...  

ABSTRACTAs a virus-encoded actin nucleation promoting factor (NPF), P78/83 induces actin polymerization to assist in Autographa californica multiple nucleopolyhedrovirus (AcMNPV) propagation. According to our previous study, although P78/83 actively undergoes ubiquitin-independent proteasomal degradation, AcMNPV encodes budded virus/occlusion derived virus (BV/ODV)-C42 (C42), which allows P78/83 to function as a stable NPF by inhibiting its degradation during viral infection. However, whether there are other viral proteins involved in regulating P78/83-induced actin polymerization has yet to be determined. In this study, we found that Ac102, an essential viral gene product previously reported to play a key role in mediating the nuclear accumulation of actin during AcMNPV infection, is a novel regulator of P78/83-induced actin polymerization. By characterizing anac102knockout bacmid, we demonstrated that Ac102 participates in regulating nuclear actin polymerization as well as the morphogenesis and distribution of capsid structures in the nucleus. These regulatory effects are heavily dependent on an interaction between Ac102 and C42. Further investigation revealed that Ac102 binds to C42 to suppress K48-linked ubiquitination of C42, which decreases C42 proteasomal degradation and consequently allows P78/83 to function as a stable NPF to induce actin polymerization. Thus, Ac102 and C42 form a regulatory cascade to control viral NPF activity, representing a sophisticated mechanism for AcMNPV to orchestrate actin polymerization in both a ubiquitin-dependent and ubiquitin-independent manner.IMPORTANCEActin is one of the most functionally important proteins in eukaryotic cells. Morphologically, actin can be found in two forms: a monomeric form called globular actin (G-actin) and a polymeric form called filamentous actin (F-actin). G-actin can polymerize to form F-actin, and nucleation promoting factor (NPF) is the initiator of this process. Many viral pathogens harness the host actin polymerization machinery to assist in virus propagation. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) induces actin polymerization in host cells. P78/83, a viral NPF, is responsible for this process. Previously, we identified that BV/ODV-C42 (C42) binds to P78/83 and protects it from degradation. In this report, we determined that another viral protein, Ac102, is involved in modulating C42 ubiquitination and, consequently, ensures P78/83 activity as an NPF to initiate actin polymerization. This regulatory cascade represents a novel mechanism by which a virus can harness the cellular actin cytoskeleton to assist in viral propagation.


Viruses ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 632 ◽  
Author(s):  
Fujun Qin ◽  
Congrui Xu ◽  
Chengfeng Lei ◽  
Jia Hu ◽  
Xiulian Sun

The cell entry mechanism of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is not fully understood. Previous studies showed that AcMNPV entered host cells primarily through clathrin-mediated endocytosis, and could efficiently infect cells via fusion with the plasma membrane after a low-pH trigger. However, whether AcMNPV enters cells via these two pathways simultaneously, and the exact manner in which AcMNPV particles are internalized into cells remains unclear. In this study, using single-virus tracking, we observed that AcMNPV particles were first captured by pre-existing clathrin-coated pits (CCP), and were then delivered to early endosomes. Population-based analysis of single-virus tracking and quantitative electron microscopy demonstrated that the majority of particles were captured by CCPs and internalized via invagination. In contrast, a minority of virus particles were not delivered to CCPs, and were internalized through direct fusion with the plasma membrane without invagination. Quantitative electron microscopy also showed that, while inhibition of CCP assembly significantly impaired viral internalization, inhibition of endosomal acidification blocked virus particles out of vesicles. Collectively, these findings demonstrated that approximately 90% of AcMNPV particles entered cells through clathrin-mediated endocytosis and 10% entered via direct fusion with the plasma membrane. This study will lead toward a better understanding of AcMNPV infection.


2005 ◽  
Vol 79 (17) ◽  
pp. 10915-10922 ◽  
Author(s):  
Zhilin Chen ◽  
Eric B. Carstens

ABSTRACT Autographa californica multiple nucleopolyhedrovirus (AcMNPV) late expression factor 3 (LEF-3) is an essential protein for DNA replication in transient assays. P143, a large DNA-binding protein with DNA-unwinding activity, is also essential for viral DNA replication in vivo. Both LEF-3 and P143 are found in the nucleus of AcMNPV-infected cells, but only LEF-3 localizes to the nucleus when expressed in transfected cells on its own from a plasmid expression vector. P143 requires LEF-3 as a transporter to enter the nucleus. To investigate the possibility that LEF-3 carries a nuclear localization signal domain, we constructed a series of LEF-3 deletion mutants and examined the intracellular localization of the products in plasmid-transfected cells. We discovered that the N-terminal 56 amino acid residues of LEF-3 were sufficient for nuclear localization and that this domain, when fused with either the green fluorescent protein reporter gene or P143, was able to direct these proteins to the nucleus. Transient DNA replication assays demonstrated that fusing the LEF-3 nuclear localization signal domain to P143 did not alter the function of P143 in supporting DNA replication but was not sufficient to substitute for whole LEF-3. These data show that although one role for LEF-3 during virus infection is to transport P143 to the nucleus, LEF-3 performs other essential replication functions once inside the nucleus.


2016 ◽  
Vol 91 (5) ◽  
Author(s):  
Zhihong Huang ◽  
Mengjia Pan ◽  
Silei Zhu ◽  
Hao Zhang ◽  
Wenbi Wu ◽  
...  

ABSTRACT Baculoviridae is a family of insect-specific viruses that have a circular double-stranded DNA genome packaged within a rod-shaped capsid. The mechanism of baculovirus nucleocapsid assembly remains unclear. Previous studies have shown that deletion of the ac83 gene of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) blocks viral nucleocapsid assembly. Interestingly, the ac83-encoded protein Ac83 is not a component of the nucleocapsid, implying a particular role for ac83 in nucleocapsid assembly that may be independent of its protein product. To examine this possibility, Ac83 synthesis was disrupted by insertion of a chloramphenicol resistance gene into its coding sequence or by deleting its promoter and translation start codon. Both mutants produced progeny viruses normally, indicating that the Ac83 protein is not required for nucleocapsid assembly. Subsequently, complementation assays showed that the production of progeny viruses required the presence of ac83 in the AcMNPV genome instead of its presence in trans. Therefore, we reasoned that ac83 is involved in nucleocapsid assembly via an internal cis-acting element, which we named the nucleocapsid assembly-essential element (NAE). The NAE was identified to lie within nucleotides 1651 to 1850 of ac83 and had 8 conserved A/T-rich regions. Sequences homologous to the NAE were found only in alphabaculoviruses and have a conserved positional relationship with another essential cis-acting element that was recently identified. The identification of the NAE may help to connect the data of viral cis-acting elements and related proteins in the baculovirus nucleocapsid assembly, which is important for elucidating DNA-protein interaction events during this process. IMPORTANCE Virus nucleocapsid assembly usually requires specific cis-acting elements in the viral genome for various processes, such as the selection of the viral genome from the cellular nucleic acids, the cleavage of concatemeric viral genome replication intermediates, and the encapsidation of the viral genome into procapsids. In linear DNA viruses, such elements generally locate at the ends of the viral genome; however, most of these elements remain unidentified in circular DNA viruses (including baculovirus) due to their circular genomic conformation. Here, we identified a nucleocapsid assembly-essential element in the AcMNPV (the archetype of baculovirus) genome. This finding provides an important reference for studies of nucleocapsid assembly-related elements in baculoviruses and other circular DNA viruses. Moreover, as most of the previous studies of baculovirus nucleocapsid assembly have been focused on viral proteins, our study provides a novel entry point to investigate this mechanism via cis-acting elements in the viral genome.


2016 ◽  
Vol 221 ◽  
pp. 30-37 ◽  
Author(s):  
Jiantao Liu ◽  
Leyuan Zhu ◽  
Shan Zhang ◽  
Zihao Deng ◽  
Zhihong Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document