scholarly journals Functional characterization of the M-type K15-encoded membrane protein of Kaposi's sarcoma-associated herpesvirus

2007 ◽  
Vol 88 (6) ◽  
pp. 1698-1707 ◽  
Author(s):  
Linding Wang ◽  
Melanie M. Brinkmann ◽  
Marcel Pietrek ◽  
Matthias Ottinger ◽  
Oliver Dittrich-Breiholz ◽  
...  

Kaposi's sarcoma-associated herpesvirus (KSHV) or human herpesvirus 8 is the causative agent of Kaposi's sarcoma, primary effusion lymphoma and the plasma-cell variant of multicentric Castleman's disease. Its alternatively spliced K15 gene encodes several membrane proteins with varying numbers of transmembrane domains. Two highly diverged alleles of the K15 gene, termed predominant (P) and minor (M), exist and share only 33 % amino acid identity with one another, but retain conserved putative src homology (SH) 2- and SH3-binding motifs. K15-M is thought to have entered the KSHV genome as the result of recombination with a related γ 2-herpesvirus. The more common K15-P allele has been shown to activate the mitogen-activated protein kinases Erk2 and JNK1 and the nuclear factor κB (NF-κB) pathway. To explore possible functional differences between K15-P and K15-M that might have influenced their spread in the KSHV population, here, the ability of the M form of K15 to activate these pathways was investigated. Similarly to K15-P, K15-M induces the activation of the Erk2 and JNK1 kinases, the NF-κB transcription factor and the expression of a similar range of cellular inflammatory genes, as assessed by gene-expression microarray studies and reporter assays. In epithelial cells, the activation of most K15-M target genes is impaired by mutagenesis of Y490 in its SH2-binding motif Y490EEV, although this motif appears less important in endothelial cells. Therefore, K15-M and K15-P can trigger similar intracellular signalling pathways, despite their extensive sequence divergence.

2003 ◽  
Vol 77 (1) ◽  
pp. 57-67 ◽  
Author(s):  
Mark Cannon ◽  
Nicola J. Philpott ◽  
Ethel Cesarman

ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV/human herpesvirus 8 [HHV-8]) is a gamma-2-herpesvirus responsible for Kaposi's sarcoma as well as primary effusion lymphoma (PEL). KSHV is a lymphotropic virus that has pirated many mammalian genes involved in inflammation, cell cycle control, and angiogenesis. Among these is the early lytic viral G protein-coupled receptor (vGPCR), a homologue of the human interleukin-8 (IL-8) receptor. When expressed, vGPCR is constitutively active and can signal via mitogen- and stress-activated kinases. In certain models it activates the transcriptional potential of NF-κB and activator protein 1 (AP-1) and induces vascular endothelial growth factor (VEGF) production. Despite its importance to the pathogenesis of all KSHV-mediated disease, little is known about vGPCR activity in hematopoietic cells. To study the signaling potential and downstream effects of vGPCR in such cells, we have developed PEL cell lines that express vGPCR under the control of an inducible promoter. The sequences required for tetracycline-mediated induction were cloned into a plasmid containing adeno-associated virus type 2 elements to enhance integration efficiency. This novel plasmid permitted studies of vGPCR activity in naturally infected KSHV-positive lymphocytes. We show that vGPCR activates ERK-2 and p38 in PEL cells. In addition, it increases the transcription of reporter genes under the control of AP-1, NF-κB, CREB, and NFAT, a Ca2+-dependent transcription factor important to KSHV lytic gene expression. vGPCR also increases the transcription of KSHV open reading frames 50 and 57, thereby displaying broad potential to affect viral transcription patterns. Finally, vGPCR signaling results in increased PEL cell elaboration of KSHV vIL-6 and VEGF, two growth factors involved in KSHV-mediated disease pathogenesis.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4034-4043 ◽  
Author(s):  
Yoshiyasu Aoki ◽  
Elaine S. Jaffe ◽  
Yuan Chang ◽  
Karen Jones ◽  
Julie Teruya-Feldstein ◽  
...  

Kaposi’s sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8 [HHV-8]) is a herpesvirus linked to the development of Kaposi’s sarcoma (KS), primary effusion lymphoma, and a proportion of Castleman’s disease. KSHV encodes viral interleukin-6 (vIL-6), which is structurally homologous to human and murine IL-6. The biological activities of vIL-6 are largely unknown. To gain insight into the biology of vIL-6, we expressed vIL-6 in murine fibroblasts NIH3T3 cells and inoculated stable vIL-6–producing clones into athymic mice. vIL-6 was detected selectively in the blood of mice injected with vIL-6–expressing clones. Compared with controls, vIL-6–positive mice displayed increased hematopoiesis in the myeloid, erythroid, and megakaryocytic lineages; plasmacytosis in spleen and lymph nodes; hepatosplenomegaly; and polyclonal hypergammaglobulinemia. vIL-6–expressing NIH3T3 cells gave rise to tumors more rapidly than did control cells, and vIL-6–positive tumors were more vascularized than controls. Vascular endothelial growth factor (VEGF) was detected at higher levels in the culture supernatant of vIL-6–expressing cells compared with controls, and immunohistochemical staining detected VEGF in spleen, lymph nodes, and tumor tissues from mice bearing vIL-6–producing tumors but not control tumors. Thus, vIL-6 is a multifunctional cytokine that promotes hematopoiesis, plasmacytosis, and angiogenesis. Through these functions, vIL-6 may play an important role in the pathogenesis of certain KSHV-associated disorders.


2001 ◽  
Vol 75 (1) ◽  
pp. 429-438 ◽  
Author(s):  
Carmen Rivas ◽  
Ai-En Thlick ◽  
Carlo Parravicini ◽  
Patrick S. Moore ◽  
Yuan Chang

ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV), or human herpesvirus 8, is associated with three proliferative diseases ranging from viral cytokine-induced hyperplasia to monoclonal neoplasia: multicentric Castleman's disease (CD), Kaposi's sarcoma (KS), and primary effusion lymphoma (PEL). Here we report a new latency-associated 1,704-bp KSHV spliced gene belonging to a cluster of KSHV sequences having homology to the interferon regulatory factor (IRF) family of transcription factors. ORFK10.5 encodes a protein, latency-associated nuclear antigen 2 (LANA2), which is expressed in KSHV-infected hematopoietic tissues, including PEL and CD but not KS lesions. LANA2 is abundantly expressed in the nuclei of cultured KSHV-infected B cells. Transcription of K10.5 in PEL cell cultures is not inhibited by DNA polymerase inhibitors nor significantly induced by phorbol ester treatment. Unlike LANA1, LANA2 does not elicit a serologic response from patients with KS, PEL, or CD as measured by Western blot hybridization. Both KSHV vIRF1 (ORFK9) and LANA2 (ORFK10.5) appear to have arisen through gene duplication of a captured cellular IRF gene. LANA2 is a potent inhibitor of p53-induced transcription in reporter assays. LANA2 antagonizes apoptosis due to p53 overexpression in p53-null SAOS-2 cells and apoptosis due to doxorubicin treatment of wild-type p53 U2OS cells. While LANA2 specifically interacts with amino acids 290 to 393 of p53 in glutathione S-transferase pull-down assays, we were unable to demonstrate LANA2-p53 interaction in vivo by immunoprecipitation. These findings show that KSHV has tissue-specific latent gene expression programs and identify a new latent protein which may contribute to KSHV tumorigenesis in hematopoietic tissues via p53 inhibition.


2001 ◽  
Vol 75 (2) ◽  
pp. 891-902 ◽  
Author(s):  
Richard G. Jenner ◽  
M. Mar Albà ◽  
Chris Boshoff ◽  
Paul Kellam

ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV; human herpesvirus 8) is associated with three human tumors, Kaposi's sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman's disease. KSHV encodes a number of homologs of cellular proteins involved in the cell cycle, signal transduction, and modulation of the host immune response. Of the virus complement of over 85 open reading frames (ORFs), the expression of only a minority has been characterized individually. We have constructed a nylon membrane-based DNA array which allows the expression of almost every ORF of KSHV to be measured simultaneously. A PEL-derived cell line, BC-3, was used to study the expression of KSHV during latency and after the induction of lytic replication. Cluster analysis, which arranges genes according to their expression profile, revealed a correlation between expression and assigned gene function that is consistent with the known stages of the herpesvirus life cycle. Furthermore, latent and lytic genes thought to be functionally related cluster into groups. The correlation between gene expression and function also infers possible roles for KSHV genes yet to be characterized.


2009 ◽  
Vol 90 (5) ◽  
pp. 1190-1201 ◽  
Author(s):  
Linding Wang ◽  
Marcel Pietrek ◽  
Melanie M. Brinkmann ◽  
Anika Hävemeier ◽  
Irina Fischer ◽  
...  

Rhesus monkey rhadinovirus (RRV) is a gamma-2 herpesvirus related to the human Kaposi's sarcoma-associated herpesvirus (KSHV or human herpesvirus 8). This study identified an alternatively spliced gene at the right side of the RRV genome (strain 17577) between open reading frame 75 and the terminal repeat region. Of its eight exons, the first seven encoded up to 12 transmembrane domains, whilst the eighth exon encoded a predicted C-terminal cytoplasmic domain. Structurally and positionally, this RRV gene therefore resembles the K15 gene of KSHV; it was provisionally named RK15 to avoid confusion with other RRV17577 genes. In ectopic expression studies, the 55 kDa RK15 protein isoform activated the JNK and NF-κB pathways, like the 45 kDa KSHV K15-encoded protein isoform. In contrast to K15, which activates angiogenic and inflammatory cytokines such as interleukin (IL)-8, IL-6 and CCL20, the range of cellular transcripts activated by the RRV K15 homologue was much more restricted, but included IL-6, IL-8 and FGF21. These data suggest functional differences between terminal membrane proteins at the right end of the genomes of Old World primate gamma-2 herpesviruses.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4034-4043 ◽  
Author(s):  
Yoshiyasu Aoki ◽  
Elaine S. Jaffe ◽  
Yuan Chang ◽  
Karen Jones ◽  
Julie Teruya-Feldstein ◽  
...  

Abstract Kaposi’s sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8 [HHV-8]) is a herpesvirus linked to the development of Kaposi’s sarcoma (KS), primary effusion lymphoma, and a proportion of Castleman’s disease. KSHV encodes viral interleukin-6 (vIL-6), which is structurally homologous to human and murine IL-6. The biological activities of vIL-6 are largely unknown. To gain insight into the biology of vIL-6, we expressed vIL-6 in murine fibroblasts NIH3T3 cells and inoculated stable vIL-6–producing clones into athymic mice. vIL-6 was detected selectively in the blood of mice injected with vIL-6–expressing clones. Compared with controls, vIL-6–positive mice displayed increased hematopoiesis in the myeloid, erythroid, and megakaryocytic lineages; plasmacytosis in spleen and lymph nodes; hepatosplenomegaly; and polyclonal hypergammaglobulinemia. vIL-6–expressing NIH3T3 cells gave rise to tumors more rapidly than did control cells, and vIL-6–positive tumors were more vascularized than controls. Vascular endothelial growth factor (VEGF) was detected at higher levels in the culture supernatant of vIL-6–expressing cells compared with controls, and immunohistochemical staining detected VEGF in spleen, lymph nodes, and tumor tissues from mice bearing vIL-6–producing tumors but not control tumors. Thus, vIL-6 is a multifunctional cytokine that promotes hematopoiesis, plasmacytosis, and angiogenesis. Through these functions, vIL-6 may play an important role in the pathogenesis of certain KSHV-associated disorders.


2002 ◽  
Vol 15 (3) ◽  
pp. 439-464 ◽  
Author(s):  
Dharam V. Ablashi ◽  
Louise G. Chatlynne ◽  
James E. Whitman, ◽  
Ethel Cesarman

SUMMARY Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), discovered in 1994, is a human rhadinovirus (gamma-2 herpesvirus). Unlike other human herpesviruses (herpes simplex virus, Epstein-Barr virus, varicella-zoster virus, cytomegalovirus, HHV-6, and HHV-7), it is not widespread in the general population and has many unique proteins. HHV-8 is strongly associated with all subtypes of Kaposi's sarcoma (KS), multicentric Castleman's disease, and a rare form of B-cell lymphoma, primary effusion lymphoma. In addition, HHV-8 DNA sequences have been found in association with other diseases, but the role of the virus in these diseases is largely unconfirmed and remains controversial. The seroprevalence of HHV-8, based on detection of latent and lytic proteins, is 2 to 5% in healthy donors except in certain geographic areas where the virus is endemic, 80 to 95% in classic KS patients, and 40 to 50% in HIV-1 patients without KS. This virus can be transmitted both sexually and through body fluids (e.g., saliva and blood). HHV-8 is a transforming virus, as evidenced by its presence in human malignancies, by the in vitro transforming properties of several of its viral genes, and by its ability to transform some primary cells in culture. It is not, however, sufficient for transformation, and other cofactors such as immunosuppressive cytokines are involved in the development of HHV-8-associated malignancies. In this article, we review the biology, molecular virology, epidemiology, transmission, detection methods, pathogenesis, and antiviral therapy of this newly discovered human herpesvirus.


2002 ◽  
Vol 76 (2) ◽  
pp. 802-816 ◽  
Author(s):  
Tyson V. Sharp ◽  
Hsei-Wei Wang ◽  
Andrew Koumi ◽  
Daniel Hollyman ◽  
Yoshio Endo ◽  
...  

ABSTRACT The Kaposi’s sarcoma-associated herpesvirus (KSHV) (or human herpesvirus 8) open reading frame (ORF) K15 encodes a putative integral transmembrane protein in the same genomic location as latent membrane protein 2A of Epstein-Barr virus. Ectopic expression of K15 in cell lines revealed the presence of several different forms ranging in size from full length, ∼50 kDa, to 17 kDa. Of these different species the 35- and 23-kDa forms were predominant. Mutational analysis of the initiator AUG indicated that translation initiation from this first AUG is required for K15 expression. Computational analysis indicates that the different forms detected may arise due to proteolytic cleavage at internal signal peptide sites. We show that K15 is latently expressed in KSHV-positive primary effusion lymphoma cell lines and in multicentric Castleman’s disease. Using a yeast two-hybrid screen we identified HAX-1 (HS1 associated protein X-1) as a binding partner to the C terminus of K15 and show that K15 interacts with cellular HAX-1 in vitro and in vivo. Furthermore, HAX-1 colocalizes with K15 in the endoplasmic reticulum and mitochondria. The function of HAX-1 is unknown, although the similarity of its sequence to those of Nip3 and Bcl-2 infers a role in the regulation of apoptosis. We show here that HAX-1 can form homodimers in vivo and is a potent inhibitor of apoptosis and therefore represents a new apoptosis regulatory protein. The putative functions of K15 with respect to its interaction with HAX-1 are discussed.


2009 ◽  
Vol 83 (9) ◽  
pp. 4308-4315 ◽  
Author(s):  
Daniel L. Di Bartolo ◽  
Elizabeth Hyjek ◽  
Shannon Keller ◽  
Ilaria Guasparri ◽  
Hongyu Deng ◽  
...  

ABSTRACT Primary effusion lymphoma (PEL) is a distinct type of B-cell non-Hodgkin lymphoma characterized by the presence of Kaposi's sarcoma-associated herpesvirus (KSHV/human herpesvirus 8). Despite having a genotype and gene expression signature of highly differentiated B cells, PEL does not usually express surface or cytoplasmic immunoglobulin (Ig). We show the lack of Oct-2 and OCA-B transcription factors to be responsible, at least in part, for this defect in Ig production. Like Ig genes, ORF50, the key regulator of the switch from latency to lytic reactivation, contains an octamer motif within its promoter. We therefore examined the impact of Oct-2 and OCA-B on ORF50 activation. The binding of Oct-1 to the ORF50 promoter has been shown to significantly enhance ORF50 transactivation. We found that Oct-2, on the other hand, inhibited ORF50 expression and consequently lytic reactivation by competing with Oct-1 for the octamer motif in the ORF50 promoter. Our data suggest that Oct-2 downregulation in infected cells would be favorable to KSHV in allowing for efficient viral reactivation.


2010 ◽  
Vol 2 ◽  
pp. VRT.S975
Author(s):  
Sofia Corte-Real ◽  
Lídia Fonseca ◽  
Carlos Barbas ◽  
Joao Goncalves

Kaposi's sarcoma associated herpesvirus (KSHV or human herpesvirus 8 [HHV-8]) is a gammaherpesvirus highly associated with KS, primary effusion lymphoma (PEL), and multicentric Castleman's disease, an aggressive lymphoproliferative disorder. KSHV, like other gammaherpesvirus latently infects predominantly B-cells and endothelial cells. Infected cells retain the virus from one generation to the next existing as a multicopy circular episomal DNA in the nucleus, expressing a limited subset of viral genes. Of these latently expressed genes, LANA1, the latency associated nuclear antigen is highly expressed in all forms of KS-associated malignancies. Various studies so far show that LANA1 tethers the viral episomes to host chromosomes and binds to specific sites within and close to the TR elements contributing to the stable maintenance of the viral episomes in successive daughter cells. Anti-LANA1 intrabody strategies might represent a new therapeutic approach to treatment of KSHV infections, since LANA1 is regained for KSHV latency. In addition, the use of intrabodies can help drug development by mapping LANA1 inhibiting regions. We report development of several LANA1 specific single chain antibodies from immunized rabbits that can be expressed intracellularly, bind to LANA1 epitopes and can be used for functional KSHV studies on viral latency.


Sign in / Sign up

Export Citation Format

Share Document