scholarly journals Hurricane Effects on a Shallow Lake Ecosystem and Its Response to a Controlled Manipulation of Water Level

2001 ◽  
Vol 1 ◽  
pp. 44-70 ◽  
Author(s):  
Karl E. Havens ◽  
Kang-Ren Jin ◽  
Andrew J. Rodusky ◽  
Bruce Sharfstein ◽  
Mark A. Brady ◽  
...  

In order to reverse the damage to aquatic plant communities caused by multiple years of high water levels in Lake Okeechobee, Florida (U.S.), the Governing Board of the South Florida Water Management District (SFWMD) authorized a "managed recession" to substantially lower the surface elevation of the lake in spring 2000. The operation was intended to achieve lower water levels for at least 8 weeks during the summer growing season, and was predicted to result in a large-scale recovery of submerged vascular plants. We treated this operation as a whole ecosystem experiment, and assessed ecological responses using data from an existing network of water quality and submerged plant monitoring sites. As a result of large-scale discharges of water from the lake, coupled with losses to evaporation and to water supply deliveries to agriculture and other regional users, the lake surface elevation receded by approximately 1 m between April and June. Water depths in shoreline areas that historically supported submerged plant communities declined from near 1.5 m to below 0.5 m. Low water levels persisted for the entire summer. Despite shallow depths, the initial response (in June 2000) of submerged plants was very limited and water remained highly turbid (due at first to abiotic seston and later to phytoplankton blooms). Turbidity decreased in July and the biomass of plants increased. However, submerged plant biomass did not exceed levels observed during summer 1999 (when water depths were greater) until August. Furthermore, a vascular plant-dominated assemblage (Vallisnera, Potamogeton, and Hydrilla) that occurred in 1999 was replaced with a community of nearly 98% Chara spp. (a macro-alga) in 2000. Hence, the lake’s submerged plant community appeared to revert to an earlier successional stage despite what appeared to be better conditions for growth. To explain this unexpected response, we evaluated the impacts that Hurricane Irene may have had on the lake in the previous autumn. In mid-October 1999, this category 1 hurricane passed just to the south of the lake, with wind velocities over the lake surface reaching 90 km h-1 at their peak. Output from a three-dimensional hydrodynamic / sediment transport model indicates that during the storm, current velocities in surface waters of the lake increased from near 5 cm s-1to as high as 100 cm s-1. These strong velocities were associated with large-scale uplifting and horizontal transport of fine-grained sediments from the lake bottom. Water quality data collected after the storm confirmed that the hurricane resulted in lake-wide nutrient and suspended solids concentrations far in excess of those previously documented for a 10-year data set. These conditions persisted through the winter months and may have negatively impacted plants that remained in the lake at the end of the 1999 growing season. The results demonstrate that in shallow lakes, unpredictable external forces, such as hurricanes, can play a major role in ecosystem dynamics. In regions where these events are common (e.g., the tropics and subtropics), consideration should be given to how they might affect long-term lake management programs.

Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1438 ◽  
Author(s):  
Luis Morales-Marín ◽  
Howard Wheater ◽  
Karl-Erich Lindenschmidt

Climate and land-use changes modify the physical functioning of river basins and, in particular, influence the transport of nutrients from land to water. In large-scale basins, where a variety of climates, topographies, soil types and land uses co-exist to form a highly heterogeneous environment, a more complex nutrient dynamic is imposed by climate and land-use changes. This is the case of the South Saskatchewan River (SSR) that, along with the North Saskatchewan River, forms one of the largest river systems in western Canada. The SPAtially Referenced Regression On Watershed (SPARROW) model is therefore implemented to assess water quality in the basin, in order to describe spatial and temporal patterns and identify those factors and processes that affect water quality. Forty-five climate and land-use change scenarios comprehended by five General Circulation Models (GCMs) and three Representative Concentration Pathways (RCPs) were incorporated into the model to explain how total nitrogen (TN) and total phosphorus (TP) export could vary across the basin in 30, 60 and 90 years from now. According to model results, annual averages of TN and TP export in the SSR are going to increase in the range 0.9–1.28 kg km − 2 year − 1 and 0.12–0.17 kg km − 2 year − 1 , respectively, by the end of the century, due to climate and land-use changes. Higher increases of TP compared to TN are expected since TP and TN are going to increase ∼36% and ∼21%, respectively, by the end of the century. This research will support management plans in order to mitigate nutrient export under future changes of climate and land use.


Author(s):  
Andreas Laug ◽  
Falko Turner ◽  
Stefan Engels ◽  
Junbo Wang ◽  
Torsten Haberzettl ◽  
...  

Fluctuating lake levels are an important driver of ecosystem change, and changes in the precipitation/evaporation balance of a region can lead to undesirable changes in ecosystem functioning. Large-scale changes in hydrology will become increasingly more likely as a result of ongoing climate change in the coming century. This is especially true for the Tibetan Plateau, which plays a crucial role as the “Asian water tower” for the surrounding densely populated regions. Chironomids (Diptera: Chironomidae) have proven to be one of the most valuable bioindicators for monitoring and reconstructing the development of aquatic ecosystems. Besides temperature, water depth and salinity are two of the most important environmental factors affecting chironomids. To study the relationship between chironomids and water depth, we analyzed surface sediment samples of two large Tibetan lakes, Selin Co and Taro Co. These lakes have similar environmental conditions (e.g. elevation, temperature and oxygenation) but show strong differences in salinity (7–10 and 0.5 ppt, respectively). Our results show that the chironomid assemblages in both lakes have similar water depths at which the fauna abruptly changes in composition, despite different faunal assemblages. The most important boundaries were identified at 0.8 and 16 m water depth. While the uppermost meter, the “splash zone”, is characterized by distinctly different conditions, resulting from waves and changing water levels, the cause of the lower zone boundary remains enigmatic. Even though none of the measured water depth-related factors, such as water temperature, oxygen content, sediment properties, light intensity or macrophyte vegetation, show a distinct change at 16 m water depth, comparison to other records show that a similar change in the chironomid fauna occurs at 16 m water depth in large, deep lakes around the world. We propose that this boundary might be connected to water pressure influencing the living conditions of the larvae or the absolute distance to the surface that has to be covered for the chironomid larvae to hatch. We conclude that water depth either directly or indirectly exerts a strong control on the chironomid assemblages even under different salinities, resulting in distribution patterns that can be used to reconstruct past fluctuations in water depths.


2020 ◽  
Vol 24 (5) ◽  
pp. 2207-2233 ◽  
Author(s):  
Charlotte Marie Emery ◽  
Sylvain Biancamaria ◽  
Aaron Boone ◽  
Sophie Ricci ◽  
Mélanie C. Rochoux ◽  
...  

Abstract. Land surface models combined with river routing models are widely used to study the continental part of the water cycle. They give global estimates of water flows and storages, but they are not without non-negligible uncertainties, among which inexact input parameters play a significant part. The incoming Surface Water and Ocean Topography (SWOT) satellite mission, with a launch scheduled for 2021 and with a required lifetime of at least 3 years, will be dedicated to the measuring of water surface elevations, widths and surface slopes of rivers wider than 100 m, at a global scale. SWOT will provide a significant number of new observations for river hydrology and maybe combined, through data assimilation, with global-scale models in order to correct their input parameters and reduce their associated uncertainty. Comparing simulated water depths with measured water surface elevations remains however a challenge and can introduce within the system large bias. A promising alternative for assimilating water surface elevations consists of assimilating water surface elevation anomalies which do not depend on a reference surface. The objective of this study is to present a data assimilation platform based on the asynchronous ensemble Kalman filter (AEnKF) that can assimilate synthetic SWOT observations of water depths and water elevation anomalies to correct the input parameters of a large-scale hydrologic model over a 21 d time window. The study is applied to the ISBA-CTRIP model over the Amazon basin and focuses on correcting the spatial distribution of the river Manning coefficients. The data assimilation algorithm, tested through a set of observing system simulation experiments (OSSEs), is able to retrieve the true value of the Manning coefficients within one assimilation cycle much of the time (basin-averaged Manning coefficient root mean square error, RMSEn, is reduced from 33 % to [1 %–10 %] after one assimilation cycle) and shows promising perspectives with assimilating water anomalies (basin-averaged Manning coefficient RMSEn is reduced from 33 % to [1 %–2 %] when assimilating water surface elevation anomalies over 1 year), which allows us to overcome the issue of unknown bathymetry.


Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 77 ◽  
Author(s):  
Jinge Zhu ◽  
Zhaoliang Peng ◽  
Xin Liu ◽  
Jiancai Deng ◽  
Yihui Zhang ◽  
...  

Aquatic plant harvest has been widely considered a plant management measure, as it can physically remove the targeted plants quickly and efficiently. Few empirical studies have examined the effects of harvesting on water quality or the aquatic plant community in a complete lake ecosystem. A large area (196 km2) of floating-leaved Nymphoides peltata was harvested in Lake Taihu in 2013. The effects of harvesting on the coverage and biomass of N. peltata and on the submerged plant community were evaluated. The quantities of nitrogen and phosphorus removed by harvesting were calculated. Harvesting caused an immediate reduction in N. peltata coverage, and its coverage in the following year ranged from 29.2% to 95.1%. Wave conditions and interspecific competition were the main factors that influenced the response of the submerged plant community to N. peltata harvesting. Harvesting may favor the dominance of Hydrilla verticillata, which expands quickly at an average growth rate of 53 ± 14 g m−2 day−1. Harvesting a large amount of N. peltata has a positive effect on total nitrogen (TN), ammonium nitrogen (NH3-N), and chemical oxygen demand (CODMn) control but can lead to different consequences (e.g., increase in total phosphorus (TP) and algal concentration).


2016 ◽  
Vol 548 ◽  
pp. 263-275 ◽  
Author(s):  
RE Lindsay ◽  
R Constantine ◽  
J Robbins ◽  
DK Mattila ◽  
A Tagarino ◽  
...  

2018 ◽  
pp. 19-39
Author(s):  
M. A. Makarova

Geobotanical survey of floodplain natural complexes near gypsum outcrops in the Pinega river valley was done in 2015. Large-scale geobotanical map of the key polygon (scale 1 : 30 000) was composed. Typological units of vegetation were selected on the basis of the composition of dominant species and groups of indicator species. Homogeneous and heterogeneous territorial units of vegetation (serial series, combinations, environmental series) were used. 53 mapped unit types (25 homogeneous types and 28 heterogeneous types) were recognized. The floodplain vegetation consists of 17 homogeneous types of plant communities, 3 series, 14 combinations and 6 ecological series. The sites of old floodplain forests, such as willow forests with Urtica sondenii rare in the Arkhangelsk region and oxbow wet meadows with Scolochloa festucacea were identified.


2009 ◽  
pp. 27-53
Author(s):  
A. Yu. Kudryavtsev

Diversity of plant communities in the nature reserve “Privolzhskaya Forest-Steppe”, Ostrovtsovsky area, is analyzed on the basis of the large-scale vegetation mapping data from 2000. The plant community classi­fication based on the Russian ecologic-phytocoenotic approach is carried out. 12 plant formations and 21 associations are distinguished according to dominant species and a combination of ecologic-phytocoenotic groups of species. A list of vegetation classification units as well as the characteristics of theshrub and woody communities are given in this paper.


Author(s):  
Heather L. Welch ◽  
Christopher T. Green ◽  
Richard A. Rebich ◽  
Jeannie R.B. Barlow ◽  
Matthew B. Hicks

Sign in / Sign up

Export Citation Format

Share Document