Analysis for water cycle change using SWAT model and water balance analysis depending on water reuse in urban area

2015 ◽  
Vol 29 (4) ◽  
pp. 447-457
Author(s):  
Young-Ran Kim ◽  
◽  
Seong-Hwan Hwang ◽  
Sung-Ok Lee
2008 ◽  
Vol 6 (2) ◽  
Author(s):  
Baina Afkril

<p>Area studi terletak di bagian tenggara Dataran Tinggi Blackwood, Australia Barat mencakup 71 km<sup>2</sup>. Akifer Yarragadee di daerah studi utamanya tersusun oleh batu pasir yang mengandung lapisan-lapisan batu lempung dan liat. Akifer ini merupakan akifer tak-tertekan karena muncul dipermukaan sepanjang alur Sungai Blackwood pada daerah hilir di Nannup dan merupakan sumber airtanah yang keluar ke sungai. Sungai Blackwood mengalir melintasi Dataran Tinggi Blackwood. Selama musim kering, aliran permukaan ke dalam Sungai Blackwood dapat diabaikan, namun aliran dasar dari airtanah menjadi sumber utama bagi aliran sungai. Neraca air pada daerah studi dilakukan dengan menggunakan analisa jaring-aliran dan kesetimbangan air guna mengevaluasi masukan airtanah dari akifer Yarragadee ke dalam Sungai Blackwood. Mayoritas sel-sel jaring-aliran adalah sel-sel keluaran dan kebanyakan aliran airtanah masuk ke dalam Sungai Blackwood di daerah studi. Curah hujan rata-rata tahunan area studi sekitar 6.7 x 10<sup>7</sup> m<sup>3</sup> a<sup>-1</sup>. Sekitar 9 % dari total curah hujan rata-rata tahunan ini masuk ke dalam tanah sebagai sumber bagi air tanah dan 91 % hilang melalui proses evapotranspirasi. Volume total airtanah yang masuk ke dalam Sungai Blackwood antara stasiun Darradup dan Layman Flat yang dihitung menggunakan analisis jarring-aliran dan kesetimbangan air sekitar 8.1 GL a<sup>-1</sup>.  </p>


Earth ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 340-356
Author(s):  
Forrest W. Black ◽  
Jejung Lee ◽  
Charles M. Ichoku ◽  
Luke Ellison ◽  
Charles K. Gatebe ◽  
...  

The present study investigated the effect of biomass burning on the water cycle using a case study of the Chari–Logone Catchment of the Lake Chad Basin (LCB). The Chari–Logone catchment was selected because it supplies over 90% of the water input to the lake, which is the largest basin in central Africa. Two water balance simulations, one considering burning and one without, were compared from the years 2003 to 2011. For a more comprehensive assessment of the effects of burning, albedo change, which has been shown to have a significant impact on a number of environmental factors, was used as a model input for calculating potential evapotranspiration (ET). Analysis of the burning scenario showed that burning grassland, which comprises almost 75% of the total Chari–Logone land cover, causes increased ET and runoff during the dry season (November–March). Recent studies have demonstrated that there is an increasing trend in the LCB of converting shrubland, grassland, and wetlands to cropland. This change from grassland to cropland has the potential to decrease the amount of water available to water bodies during the winter. All vegetative classes in a burning scenario showed a decrease in ET during the wet season. Although a decrease in annual precipitation in global circulation processes such as the El Niño Southern Oscillation would cause droughts and induce wildfires in the Sahel, the present study shows that a decrease in ET by the human-induced burning would cause a severe decrease in precipitation as well.


2021 ◽  
Vol 29 (7) ◽  
pp. 2411-2428
Author(s):  
Robin K. Weatherl ◽  
Maria J. Henao Salgado ◽  
Maximilian Ramgraber ◽  
Christian Moeck ◽  
Mario Schirmer

AbstractLand-use changes often have significant impact on the water cycle, including changing groundwater/surface-water interactions, modifying groundwater recharge zones, and increasing risk of contamination. Surface runoff in particular is significantly impacted by land cover. As surface runoff can act as a carrier for contaminants found at the surface, it is important to characterize runoff dynamics in anthropogenic environments. In this study, the relationship between surface runoff and groundwater recharge in urban areas is explored using a top-down water balance approach. Two empirical models were used to estimate runoff: (1) an updated, advanced method based on curve number, followed by (2) bivariate hydrograph separation. Modifications were added to each method in an attempt to better capture continuous soil-moisture processes and explicitly account for runoff from impervious surfaces. Differences between the resulting runoff estimates shed light on the complexity of the rainfall–runoff relationship, and highlight the importance of understanding soil-moisture dynamics and their control on hydro(geo)logical responses. These results were then used as input in a water balance to calculate groundwater recharge. Two approaches were used to assess the accuracy of these groundwater balance estimates: (1) comparison to calculations of groundwater recharge using the calibrated conceptual HBV Light model, and (2) comparison to groundwater recharge estimates from physically similar catchments in Switzerland that are found in the literature. In all cases, recharge is estimated at approximately 40–45% of annual precipitation. These conditions were found to closely echo those results from Swiss catchments of similar characteristics.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2120
Author(s):  
Clifford B. Fedler

Water reuse via land application is old technology; but the water balance only design approach and practice has not worked well. There are many benefits of water reuse by irrigating crops; however, there are some risks if not designed properly. When the design approach uses a combined water-nutrient-salt balance, the most effective and sustainable, long-term system is achieved. This approach provides a design based on land area requirements, on-site water storage, and economic return from the irrigated crops. The single, most often overlooked step in the water balance is accounting for the water stored in the soil. When spread over large areas, this quantity of water results in considerably less required surface water storage, which saves capital costs. This design approach has been used successfully on multiple sites for over 30 years without failure.


2021 ◽  
Vol 36 ◽  
pp. 100837
Author(s):  
Mou Leong Tan ◽  
Yi Lin Tew ◽  
Kwok Pan Chun ◽  
Narimah Samat ◽  
Shazlyn Milleana Shaharudin ◽  
...  

2019 ◽  
Vol 34 (02) ◽  
Author(s):  
R. K. Jaiswal ◽  
T. Thomas ◽  
Jyoti P Patil ◽  
Meeta Gupta ◽  
V. C. Goyal

It is a well-known fact that it is not all possible to avoid droughts, but droughts can be managed to minimise the hardships of the local population. For this purpose, understanding of the supply-demand scenario is of utmost importance to understand the overall hydrology and planning needs of any watershed. It is in this direction, the comprehensive water balance analysis has been performed for the Sajnam watershed in Lalitpur district of Bundelkhand which is susceptible to regular and continuous droughts. The detailed water balance has been carried out after identification of important components and their quantification using the advance tools of Remote Sensing and GIS alongwith standard estimation techniques of individual components. It was observed that the runoff at the outlet of Sajnam basin is influenced by the water storage in the irrigation project located on the main river. The higher surface runoff of 668.53 MCM, 406.17 MCM, 343.46 MCM and 214.00 MCM is generated only during 2013-14, 2008-09, 2012-13 and 2010-11 respectively. During the remaining years, the runoff varied between 89.35 MCM and 209.81 MCM. Efforts can be initiated towards exploring the possibility of more water harvesting structures onthe lower order tributaries as well as artificial recharge measures depending on the hydro-geology of the watershed..


Sign in / Sign up

Export Citation Format

Share Document