scholarly journals The potential of electricity transmission corridors in forested areas as bumble bee habitat

2015 ◽  
Author(s):  
Bruce Hill ◽  
Ignasi Bartomeus

AbstractDeclines in pollinator abundance and diversity are not only a conservation issue but also a threat to crop pollination. Maintained infrastructure corridors, such as those containing electricity transmission lines, are potentially important wild pollinator habitat. However, there is a lack of evidence comparing the abundance and diversity of wild pollinators in transmission corridors with other important pollinator habitats. We compared the diversity of a key pollinator group, bumble bees (Bombus spp.), between transmission corridors and the surrounding semi-natural and managed habitat types at ten sites across Sweden’s Uppland region. Our results show that transmission corridors have no impact on bumble bee diversity in the surrounding area. However, transmission corridors and other maintained habitats have a level of bumble bees abundance and diversity comparable to semi-natural grasslands and host species that are important for conservation and ecosystem service provision. Under the current management regime, transmission corridors already provide valuable bumble bee habitat, but given that host plant density is the main determinant of bumble bee abundance, these areas could potentially be enhanced by establishing and maintaining key host plants. We show that in northern temperate regions the maintenance of transmission corridors has the potential to contribute to bumble bee conservation and the ecosystem services they provide.

2016 ◽  
Vol 3 (11) ◽  
pp. 160525 ◽  
Author(s):  
Bruce Hill ◽  
Ignasi Bartomeus

Declines in pollinator abundance and diversity are not only a conservation issue, but also a threat to crop pollination. Maintained infrastructure corridors, such as those containing electricity transmission lines, are potentially important wild pollinator habitat. However, there is a lack of evidence comparing the abundance and diversity of wild pollinators in transmission corridors with other important pollinator habitats. We compared the diversity of a key pollinator group, bumblebees ( Bombus spp.), between transmission corridors and the surrounding semi-natural and managed habitat types at 10 sites across Sweden's Uppland region. Our results show that transmission corridors have no impact on bumblebee diversity in the surrounding area. However, transmission corridors and other maintained habitats such as roadsides have a level of bumblebee abundance and diversity comparable to semi-natural grasslands and host species that are important for conservation and ecosystem service provision. Under the current management regime, transmission corridors already provide valuable bumblebee habitat, but given that host plant density is the main determinant of bumblebee abundance, these areas could potentially be enhanced by establishing and maintaining key host plants. We show that in northern temperate regions the maintenance of transmission corridors has the potential to contribute to bumblebee conservation and the ecosystem services they provide.


2017 ◽  
Vol 4 (5) ◽  
pp. 170156 ◽  
Author(s):  
Paul Glaum ◽  
Maria-Carolina Simao ◽  
Chatura Vaidya ◽  
Gordon Fitch ◽  
Benjamin Iulinao

Native bee populations are critical sources of pollination. Unfortunately, native bees are declining in abundance and diversity. Much of this decline comes from human land-use change. While the effects of large-scale agriculture on native bees are relatively well understood, the effects of urban development are less clear. Understanding urbanity's effect on native bees requires consideration of specific characteristics of both particular bee species and their urban landscape. We surveyed bumble-bee ( Bombus spp.) abundance and diversity in gardens across multiple urban centres in southeastern Michigan. There are significant declines in Bombus abundance and diversity associated with urban development when measured on scales in-line with Bombus flight ability. These declines are entirely driven by declines in females; males showed no response to urbanization. We hypothesize that this is owing to differing foraging strategies between the sexes, and it suggests reduced Bombus colony density in more urban areas. While urbanity reduced Bombus prevalence, results in Detroit imply that ‘shrinking cities’ potentially offer unique urban paradigms that must be considered when studying wild bee ecology. Results show previously unidentified differences in the effects of urbanity on female and male bumble-bee populations and suggest that urban landscapes can be managed to support native bee conservation.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Sujaya Rao ◽  
W. P. Stephen

There are widespread concerns about declining populations of bumble bees due to conversion of native habitats to agroecosystems. Certain cropping systems, however, provide enormous foraging resources, and are beneficial for population build up of native bees, especially eusocial bees such as bumble bees. In this review, we present evidence of a flourishing bumble bee fauna in the Willamette Valley in western Oregon which we believe is sustained by cultivation of bee-pollinated crops which bloom in sequence, and in synchrony with foraging by queens and workers of a complex of bumble bee species. In support of our perspective, we describe the Oregon landscape and ascribe the large bumble bee populations to the presence of a pollen source in spring (cultivated blueberries) followed by one in summer (red clover seed crops). Based on our studies, we recommend integration into conservation approaches of multiple agroecosystems that bloom in sequence for sustaining and building bumble bee populations.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 421
Author(s):  
Amélie Gervais ◽  
Marc Bélisle ◽  
Marc J. Mazerolle ◽  
Valérie Fournier

Bumble bees are among the most effective pollinators in orchards during the blooming period, yet they are often threatened by the high levels of pesticide use in apple production. This study aimed to evaluate the influence of landscape enhancements (e.g., hedgerows, flower strips) on bumble bee queens in apple orchards. Bumble bee queens from 12 orchards in southern Québec (Canada) were marked, released, and recaptured in the springs and falls of 2017 to 2019. Half of the 12 orchards had landscape enhancements. Apples were harvested in 2018 and 2019 to compare their quality (weight, diameter, sugar level, and seed number) in sites with and without landscape enhancements. Species richness, as well as the occurrence of three species out of eight, was higher in orchards with landscape enhancements than in orchards without such structures. The occurrence of Bombus ternarius was lower in orchards with high levels of pesticide use. Apples had fewer seeds when collected in orchards with landscape enhancements and were heavier in orchards that used more pesticides. Our work provides additional evidence that landscape enhancements improve bumble bee presence in apple orchards and should therefore be considered as a means to enhance pollination within farms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcel Mertes ◽  
Julie Carcaud ◽  
Jean-Christophe Sandoz

AbstractSociality is classified as one of the major transitions in evolution, with the largest number of eusocial species found in the insect order Hymenoptera, including the Apini (honey bees) and the Bombini (bumble bees). Bumble bees and honey bees not only differ in their social organization and foraging strategies, but comparative analyses of their genomes demonstrated that bumble bees have a slightly less diverse family of olfactory receptors than honey bees, suggesting that their olfactory abilities have adapted to different social and/or ecological conditions. However, unfortunately, no precise comparison of olfactory coding has been performed so far between honey bees and bumble bees, and little is known about the rules underlying olfactory coding in the bumble bee brain. In this study, we used in vivo calcium imaging to study olfactory coding of a panel of floral odorants in the antennal lobe of the bumble bee Bombus terrestris. Our results show that odorants induce reproducible neuronal activity in the bumble bee antennal lobe. Each odorant evokes a different glomerular activity pattern revealing this molecule’s chemical structure, i.e. its carbon chain length and functional group. In addition, pairwise similarity among odor representations are conserved in bumble bees and honey bees. This study thus suggests that bumble bees, like honey bees, are equipped to respond to odorants according to their chemical features.


2020 ◽  
Vol 113 (3) ◽  
pp. 1055-1061 ◽  
Author(s):  
Laura Šimenc ◽  
Urška Kuhar ◽  
Urška Jamnikar-Ciglenečki ◽  
Ivan Toplak

Abstract The complete genome of Lake Sinai virus 3 (LSV3) was sequenced by the Ion Torrent next-generation sequencing (NGS) technology from an archive sample of honey bees collected in 2010. This strain M92/2010 is the first complete genome sequence of LSV lineage 3. From October 2016 to December 2017, 56 honey bee samples from 32 different locations and 41 bumble bee samples from five different locations were collected. These samples were tested using a specific reverse transcriptase-polymerase chain reaction (RT-PCR) method; 75.92% of honey bee samples and 17.07% of bumble bee samples were LSV-positive with the RT-PCR method. Phylogenetic comparison of 557-base pair-long RNA-dependent RNA polymerase (RdRp) genome region of selected 23 positive samples of honey bees and three positive bumble bee samples identified three different LSV lineages: LSV1, LSV2, and LSV3. The LSV3 lineage was confirmed for the first time in Slovenia in 2010, and the same strain was later detected in several locations within the country. The LSV strains detected in bumble bees are from 98.6 to 99.4% identical to LSV strains detected among honey bees in the same territory.


2019 ◽  
Vol 113 (2) ◽  
pp. 575-581 ◽  
Author(s):  
Jessica L Mullins ◽  
James P Strange ◽  
Amber D Tripodi

Abstract Bumble bees (Bombus [Hymenoptera: Apidae]) are important pollinators for agricultural crops, which has led to their commercial domestication. Despite their importance, little is known about the reproductive biology of bumble bees native to North America. The Hunt bumble bee (Bombus huntii Greene [Hymenoptera: Apidae]) and the Vosnesensky bumble bee (Bombus vosnesenskii Radoszkowski [Hymenoptera: Apidae] are native candidates for commercial production in western North America due to their efficacy in providing commercial pollination services. Availability of pollinators native to the region in which services would be provided would minimize the likelihood of introducing exotic species and spreading novel disease. Some parasites are known to affect bumble bee reproduction, but little is known about their prevalence in North America or how they affect queen success. Only 38% of wild-caught B. huntii and 51% wild-caught B. vosnesenskii queens collected between 2015 and 2017 initiated nests in the laboratory. Our objective was to identify causal factors leading to a queen’s inability to oviposit. To address this, we dissected each broodless queen and diagnosed diseases, assessed mating status, and characterized ovary development. Nematodes, arthropods, and microorganisms were detected in both species. Overall, 20% of queens were infected by parasites, with higher rates in B. vosnesenskii. Over 95% of both species were mated, and over 88% had developed ovaries. This suggests that parasitism and mating status were not primary causes of broodlessness. Although some failure to nest can be attributed to assessed factors, additional research is needed to fully understand the challenges presented by captive rearing.


2017 ◽  
Vol 16 (2) ◽  
pp. 148-159 ◽  
Author(s):  
Fikile Nxumalo

This article examines children’s encounters with dead and dying bumble bees in their everyday entangled lives. Within the context of an early childhood classroom located in suburban British Columbia, Canada, the article stories situated and emergent bee–child worldings to illustrate possibilities for learning with other species in anthropogenically damaged worlds. I pay attention to some of the ways in which children’s and educators’ practices have shifted away from encountering bees predominantly as objects of scientific knowledge towards more relational, embodied, and affective immersion in the lives and deaths of bumble bees. Situating these practices within current bumble bee vulnerabilities, I consider how children’s and educators’ inquiries might be viewed as pedagogies that matter for learning to live less destructively with others in current times of anthropogenic change.


1987 ◽  
Vol 65 (9) ◽  
pp. 2168-2176 ◽  
Author(s):  
K. W. Richards

Diversity, density, efficiency, and effectiveness of pollinators of cicer milkvetch, Astragalus cicer L., grown at two locations in southern Alberta were studied from 1978 to 1983. Twenty-seven species of bees were identified as pollinators. At Lethbridge, honey bees (Apis mellifera) comprised 74% of the observations, bumble bees 16%, and leafcutter bees 10%, while at Spring Coulee, the proportions were honey bees 14%, bumble bees 69%, and leafcutter bees 17%. The rate of foraging by pollinator species from flower to flower varied; bumble bee species, especially Bombus nevadensis Cress., foraged consistently more efficiently than honey bees or alfalfa leafcutter bees, Megachile rotundata (F.). A theoretical approach used to predict the bee populations required to pollinate varying flower densities shows that the population of B. nevadensis required is about half those of Bombus huntii Greene and M. rotundata and less than one-quarter that of the honey bee. Pollination by B. nevadensis consistently resulted in more seeds per pod than with any other bumble bee species, the honey bee, or M. rotundata. Of the nine species of bumble bee that established colonies in artificial domiciles near the field, B. nevadensis established the most colonies each year. The number of workers and sexuals produced per colony varied considerably among bumble bee species with only 55% of the colony establishments producing workers and 31% producing sexuals. The propagation rate and quality of alfalfa leafcutter bees produced on cicer milkvetch was excellent.


Sign in / Sign up

Export Citation Format

Share Document