scholarly journals Pharmacology of W-18 and W-15

2016 ◽  
Author(s):  
Xi-Ping Huang ◽  
Tao Che ◽  
Thomas J Mangano ◽  
Valerie Le Rouzic ◽  
Ying-Xian Pan ◽  
...  

ABSTRACTW-18 (1-(4-Nitrophenylethyl)piperidylidene-2-(4-chlorophenyl)sulfonamide)and W-15 (4-chloro-N-[1-(2-phenylethyl)-2-piperidinylidene]-benzenesulfonamide) represent two emerging drugs of abuse chemically related to the potent opioid agonist fentanyl (N-(1-(2-phenylethyl)-4-piperidinyl)-N-phenylpropanamide). Here we describe the comprehensive pharmacological profiles of W-18 and W-15. Although W-18 and W-15 have been described as having potent anti-nociceptive activity and are presumed to interact with opioid receptors, we found them to be without detectible opioid activity at μ, δ, κ and nociception opioid receptors in a variety of assays. We also tested W-18 and W-15 for activity as allosteric modulators at opioid receptors and found them devoid of significant positive or negative allosteric modulatory activity. Comprehensive profiling at essentially all the druggable G-protein coupled receptors in the human genome using the PRESTO-Tango platform revealed no significant activity. In silico predictions using the Similarity Ensemble Approach suggested activity for W-18 only weakly at H3-histamine receptors, which was not confirmed in radioligand binding studies. Weak activity at the sigma receptors and the peripheral benzodiazepine receptor were found for W-18 (Ki=271 nM); W-15 displayed weak antagonist activity at 5-HT2-family serotonin receptors. W-18 is extensively metabolized, but its metabolites also lack opioid activity. W-18 and W-15 did inhibit hERG binding suggesting possible cardiovascular side-effects with high doses. Thus although W-18 and W-15 have been suggested to be potent opioid agonists, our results reveal no significant activity at these or other known targets for psychoactive drugs.

Author(s):  
Sneha Singh ◽  
Madhwi Ojha ◽  
Divya Yadav ◽  
Sonja Kachler ◽  
Karl-Norbert Klotz ◽  
...  

Background: ABSTRACT: Background: 8-Phenyltheophylline derivatives exhibit prophylactic effects at a specific dose but do not produce the cardiovascular or emetic side effects associated with xanthines, thereby exhibiting unique characteristics of potential therapeutic importance. Methods: Novel series of 8-(proline/pyrazole)-substituted xanthine analogs has been synthesized. The affinity and selectivity of compounds to adenosine receptors have been assessed by radioligand binding studies. The synthesized compounds also showed good bronchospasmolytic properties (increased onset of bronchospasm; decreased duration of jerks) with 100% survival of animals in comparison to the standard drug. Besides, compound 8f & 9f showed good binding affinity in comparison to other synthesized compounds in the micromolar range. Results: The maximum binding affinity of these compounds was observed for A2B receptors, which is ~ 7 or 10 times higher as compared to A1, A2A and A3 receptors. The newly synthesized derivatives 8f, 9a-f, 17g-m, and 18g-m displayed significant protection against histamine aerosol induced bronchospasm in guinea pigs. Conclusion: Newly synthesized proline/pyrazole based xanthines compounds showed a satisfactory binding affinity for adenosine receptor subtypes. Replacement or variation of substituted proline ring with substituted pyrazole scaffold at 8thposition of xanthine moiety resulted in the reduction of adenosine binding affinity and bronchospasmolytic effects.


Author(s):  
Ad P. Ijzerman ◽  
Armand Voorschuur ◽  
Marieke Kruidering ◽  
Irene M. Pirovano ◽  
Herman Van Belle ◽  
...  

1989 ◽  
Vol 256 (1) ◽  
pp. R224-R230 ◽  
Author(s):  
R. M. Elfont ◽  
P. R. Sundaresan ◽  
C. D. Sladek

R224-R230, 1989.--[125I]iodocyanopindolol ([125I]ICYP) and [3H]rauwolscine were used to quantitate, respectively, the beta- and alpha 2-adrenergic receptors in freshly isolated bovine cerebral microvessels and in pericyte cultures derived from these microvessels. Morphological and immunocytochemical criteria distinguished the pericytes from endothelial cells. Competitive binding studies established the specificity of the radioligand binding. The maximal number of binding sites (Bmax) for [125I]ICYP in the pericytes constituted only 8% of that in the microvessels (3.5 +/- 1.3 vs. 44.4 +/- 6.6 fmol/mg protein). In contrast, the Bmax for [3H]rauwolscine in the pericytes was 50% of that in the microvessels (55.4 +/- 11.8 vs. 111.1 +/- 9.5 fmol/mg protein). The dissociation constants for both [125I]ICYP and [3H]rauwolscine were similar in the two preparations. No alpha 1-adrenergic receptors, as defined by the specific binding of [3H]prazosin, were identified either in the pericytes or microvessels. Overall, our results suggest that pericytes contribute minimally to the total beta-adrenoceptor number of cerebral microvessels, and thus the beta-adrenoceptors must be located predominantly on endothelial cells. However, the contribution of pericytes to the total alpha 2-adrenoceptor number of the microvessels may be substantial.


2013 ◽  
Vol 45 (2) ◽  
pp. 89-97 ◽  
Author(s):  
Rosemarie Panetta ◽  
Luc Meury ◽  
Chang Qing Cao ◽  
Carole Puma ◽  
Françoise Mennicken ◽  
...  

Neuromedin U (NMU) plays an important role in a number of physiological processes, but the relative contribution of its two known receptors, NMUR1 and NMUR2, is still poorly understood. Here we report the existence of a SNP T1022→A (Val341→Glu) in the third exon of the rat Nmur1 gene that leads to an inactive receptor. This SNP is present within the coding region of the highly conserved NPXXY motif found within all class A type G protein-coupled receptors and translates to an NMUR1 receptor that is not expressed on the cell surface. Genetic analysis of the Nmur1 gene in a population of Sprague-Dawley rats revealed that this strain is highly heterogeneous for the inactivating polymorphism. The loss of functional NMUR1 receptors in Sprague-Dawley rats homozygous for the inactive allele was confirmed by radioligand binding studies on native tissue expressing NMUR1. The physiological relevance of this functional genomics finding was examined in two nociceptive response models. The pronociceptive effects of NMU were abolished in rats lacking functional NMUR1 receptors. The existence of naturally occurring NMUR1-deficient rats provides a novel and powerful tool to investigate the physiological role of NMU and its receptors. Furthermore, it highlights the importance of verifying the NMUR1 single nucleotide polymorphism status for rats used in physiological, pharmacological or toxicological studies conducted with NMUR1 modulators.


1985 ◽  
Vol 28 (9) ◽  
pp. 1140-1141 ◽  
Author(s):  
P. S. Portoghese ◽  
D. L. Larson ◽  
C. B. Yim ◽  
L. M. Sayre ◽  
G. Ronsisvalle ◽  
...  

1992 ◽  
Vol 263 (6) ◽  
pp. C1289-C1294 ◽  
Author(s):  
D. Mohuczy-Dominiak ◽  
L. C. Garg

Our studies on Madin-Darby canine kidney (MDCK) cells have demonstrated that high-affinity specific muscarinic receptors coupled to the phosphoinositide system are present in these cells. To determine whether muscarinic receptors in MDCK cells are linked negatively to the adenylate cyclase system, we measured the effect of muscarinic agonists and antagonists on vasopressin-, isoproterenol-, and forskolin-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) formation. Vasopressin produced a maximum stimulation of cAMP formation of 13 pmol.10(6) cells-1.2 min-1 at 10(-7) M. Isoproterenol and forskolin stimulated cAMP formation production to 21 pmol.10(6) cells-1.2 min-1 and 64 pmol.10(6) cells-1.10 min-1, respectively, at 10(-4) M. The effects of vasopressin, isoproterenol, and forskolin were blocked by arecoline, a cholinergic agonist, in a concentration-dependent manner. The arecoline response was blocked by treatment of the cells with pertussis toxin. The inhibition by arecoline of forskolin-stimulated cAMP formation was reversed by various muscarinic antagonists in the following order of potency: 4-diphenyl-acetoxy-N-methylpiperidine > p-fluorohexahydrosiladifenidol > pirenzepine > methoctramine. This order of potency of muscarinic antagonists is similar to that observed in our radioligand binding studies and is consistent with the M3 subtype of muscarinic receptors. Our results indicate that muscarinic receptors in MDCK cells are coupled negatively to the adenylate cyclase system via pertussis toxin-sensitive G protein. It is concluded that this intracellular system may at least be partially responsible for the action of cholinergic agonists in these cells and in the kidney.


Sign in / Sign up

Export Citation Format

Share Document