scholarly journals Ploidy tug-of-war: evolutionary and genetic environments influence the rate of ploidy drive in a human fungal pathogen

2016 ◽  
Author(s):  
Aleeza C. Gerstein ◽  
Heekyung Lim ◽  
Judith Berman ◽  
Meleah A. Hickman

AbstractVariation in baseline ploidy is seen throughout the tree of life, yet the factors that determine why one ploidy level is selected over another remain poorly understood. Experimental evolution studies using asexual fungal microbes with manipulated ploidy levels intriguingly reveals a propensity to return to the historical baseline ploidy, a phenomenon that we term ‘ploidy drive’. We evolved haploid, diploid, and polyploid strains of the human fungal pathogen Candida albicans under three different nutrient limitation environments to test whether these conditions, hypothesized to select for low ploidy levels, could counteract ploidy drive. Strains generally maintained or acquired smaller genome sizes in minimal medium and under phosphorus depletion compared to in a complete medium, while mostly maintained or acquired increased genome sizes under nitrogen depletion. Surprisingly, improvements in fitness often ran counter to changes in total nuclear genome size; in a number of scenarios lines that maintained their original genome size often increased in fitness more than lines that converged towards diploidy. Combined, this work demonstrates a role for both the environment and genotype in determination of the rate of ploidy drive, and highlights questions that remain about the force(s) that cause genome size variation.


2008 ◽  
Vol 276 (3-4) ◽  
pp. 209-217 ◽  
Author(s):  
Itayguara Ribeiro da Costa ◽  
Marcelo Carnier Dornelas ◽  
Eliana Regina Forni-Martins


2018 ◽  
Vol 221 (3) ◽  
pp. 1609-1618 ◽  
Author(s):  
Fan Qiu ◽  
Eric J. Baack ◽  
Kenneth D. Whitney ◽  
Dan G. Bock ◽  
Hannah M. Tetreault ◽  
...  




2021 ◽  
Vol 15 (2) ◽  
pp. 137-148
Author(s):  
Jiabao Li ◽  
Kailin Zhu ◽  
Qin Wang ◽  
Xin Chen

Eight taxa of Sorbus Linnaeus, 1753 sensu stricto (Rosaceae) from China have been studied karyologically through chromosome counting, chromosomal measurement and karyotype symmetry. Genome size was also estimated by flow cytometry. Six taxa, S. amabilis Cheng ex T.T.Yu et K.C.Kuan, 1963, S. hupehensis var. paucijuga (D.K. Zang et P.C. Huang, 1992) L.T. Lu, 2000, S. koehneana C.K. Schneider, 1906, S. pohuashanensis (Hance, 1875) Hedlund, 1901, S. scalaris Koehne, 1913 and S. wilsoniana C.K. Schneider, 1906 are diploids with 2n = 34, whereas two taxa, S. filipes Handel-Mazzetti,1933 and S. ovalis McAllister, 2005 are tetraploid with 2n = 68. In general, the chromosome size is mainly small, and karyotypes are symmetrical with predominance of metacentric chromosomes. Genome size variation of diploids and tetraploids is 1.401 pg –1.676 pg and 2.674 pg –2.684 pg, respectively. Chromosome numbers of S. amabilis and S. hupehensis var. paucijuga, and karyotype and genome size of eight taxa studied are reported for the first time. This study emphasised the reliability of flow cytometry in genome size determination to infer ploidy levels in Chinese native Sorbus species.



Genome ◽  
2010 ◽  
Vol 53 (12) ◽  
pp. 1066-1082 ◽  
Author(s):  
David Zaitlin ◽  
Andrew J. Pierce

The Gesneriaceae (Lamiales) is a family of flowering plants comprising >3000 species of mainly tropical origin, the most familiar of which is the cultivated African violet ( Saintpaulia spp.). Species of Gesneriaceae are poorly represented in the lists of taxa sampled for genome size estimation; measurements are available for three species of Ramonda and one each of Haberlea , Saintpaulia, and Streptocarpus , all species of Old World origin. We report here nuclear genome size estimates for 10 species of Sinningia , a neotropical genus largely restricted to Brazil. Flow cytometry of leaf cell nuclei showed that holoploid genome size in Sinningia is very small (approximately two times the size of the Arabidopsis genome), and is small compared to the other six species of Gesneriaceae with genome size estimates. We also documented intraspecific genome size variation of 21%–26% within a group of wild Sinningia speciosa (Lodd.) Hiern collections. In addition, we analyzed 1210 genome survey sequences from S. speciosa to characterize basic features of the nuclear genome such as guanine–cytosine content, types of repetitive elements, numbers of protein-coding sequences, and sequences unique to S. speciosa. We included several other angiosperm species as genome size standards, one of which was the snapdragon ( Antirrhinum majus L.; Veronicaceae, Lamiales). Multiple measurements on three accessions indicated that the genome size of A. majus is ∼633 × 106 base pairs, which is approximately 40% of the previously published estimate.



2022 ◽  
Vol 308 (1) ◽  
Author(s):  
Josef Greimler ◽  
Eva M. Temsch ◽  
Zhiqing Xue ◽  
Hanna Weiss-Schneeweiss ◽  
Polina Volkova ◽  
...  

AbstractThe grass Deschampsia cespitosa is a variable taxon out of which many varieties, subspecies and endemic species have been separated. In this paper, the variation in genome size (GS) and ploidy of this grass including several of its subspecies and two related species in Eurasia was investigated by flow cytometric (FCM) measurements. GS and ploidy data were also related to specific environments and reproduction mode. Ploidy levels found by FCM were confirmed by chromosome counts of diploid (2n = 28) and tetraploid (2n = 52) samples. Seminiferous (seed bearing) D. cespitosa was mainly diploid (GS between 3.754 and 5.438 pg/1C). GS variation in diploids showed a geographic pattern with a significant difference (H = 41,441, P < 0.001) between European (median = 4.377 pg) and Asian (median = 4.881 pg) accessions. Genome size (1C) in tetraploids ranged from 7.9426 to 9.0399 pg. Tetraploid seminiferous D. cespitosa was found mostly in disturbed habitats in western and southern Europe, while tetraploids in Asia were registered in wet Arctic habitats. Genome size (1C between 8.3278 and 8.8603 pg) of the pseudoviviparous plants (spikelets produce plantlets asexually) of wet habitats in central and northern Europe indicated tetraploidy. A putative triploid (GS 6.6817 pg) was detected in Iceland. Summing up, we found a high variation in GS on the geographic scale with significant regional differences in diploid D. cespitosa. Among the tetraploids, the asexually reproducing plants were bound to specific habitats, while the seminiferous plants showed a habitat preference similar to the diploids.



2017 ◽  
Vol 11 (2) ◽  
pp. 351-362
Author(s):  
Jamie Ladner ◽  
Mark H. Mayfield ◽  
L. Alan Prather ◽  
Carolyn J. Ferguson

Polyploidy is conspicuous in the genus Phlox, and some species exhibit variation in ploidy levels, or cytotypic variation. Diploid, tetraploid and hexaploid popula-tions of P. nana occur across parts of the species distribution in the southwestern United States and northern Mexico. A recent study highlighted two areas for which ploidy level inferences were challenging: a population on the Pecos Plains of New Mexico (“Caprock”) and the Davis Mountains region of West Texas. Plants in these areas were sampled and chromosome counts and flow cytometry methods were used to assess ploidy levels and genome sizes. Homoploid variation in ge-nome size was unambiguously documented: the genome size of tetraploid plants from the Davis Mountains was significantly larger than that of plants from Caprock. The general condition of larger genome sizes for plants in the Davis Mountains explains previous difficulty in determining ploidy levels within the region. Most plants at the Caprock population appeared to be tetraploid (2n=28), but chromosome counts revealed variants, including some putative pentaploids. Within the Davis Mountains region, both diploid (2n=14) and tetraploid (2n=28) cytotypes were documented, with a parapatric distribution. Overall, this study clarifies patterns of cytotypic diversity in P. nana, highlights an example of infraspecific, homoploid genome size variation, and contributes to a framework for ongoing evolutionary investigation in this study system.



HortScience ◽  
2016 ◽  
Vol 51 (4) ◽  
pp. 330-333 ◽  
Author(s):  
David J. Roberts ◽  
Dennis J. Werner

Cercis is an ancient member of Fabaceae, often cultivated as an ornamental tree, and can be found in numerous regions around the world. Previous studies have reported Cercis canadensis as being diploid with 2n = 2x = 14. However, there have been no further investigations into ploidy and genome size variation among Cercis taxa. A study was conducted to evaluate the relative genome size and ploidy levels of numerous species, cultivars, and botanical varieties of Cercis, representing taxa found in North America, Asia, and the Middle East. In addition, the genome size of Bauhinia forficata, a close relative of Cercis, was also determined. Genome size estimates (2C values) were determined by calculating the mean fluorescence of stained nuclei via flow cytometry. Propidium iodide was used as the staining agent and Glycine max was used as an internal standard for each taxon analyzed. Genome size estimates for all Cercis sampled ranged from 0.70 to 0.81 pg with an average size of 0.75 pg. The genome size of B. forficata was found to be smaller than any other Bauhinia sp. currently on record, with an average size of 0.87 pg. This study confirmed an initial estimation of the genome size of Cercis chinensis and found that floral buds of Cercis proved to be an excellent source of plant tissue for obtaining intact nuclei. All species, botanical varieties, and cultivars of Cercis surveyed for this study had remarkably similar genome sizes despite their wide range of distribution. This information can facilitate a better understanding of phylogenetic relationships within Cercideae and Cercis specifically.



Genome ◽  
2004 ◽  
Vol 47 (2) ◽  
pp. 246-256 ◽  
Author(s):  
Elzbieta Kuta ◽  
Borut Bohanec ◽  
Ewa Dubas ◽  
Liliana Vizintin ◽  
Leslaw Przywara

Chromosomes and nuclear DNA amount were analyzed in leaf tissues of Luzula nivea, Luzula luzuloides, and Luzula multiflora. Intra- and interspecific karyological variability was stated. Chromosome numbers in diploids ranged 2n = 8-24 in L. nivea and L. luzuloides and 2n = 12-84 in hexaploid L. multiflora. Karyological variability resulted mainly from chromosome fission (agmatoploidy) and aneusomaty; chromosome fusion (symploidy) and polyploidy were also involved. Flow cytometric determination of nuclear genome size using propidium iodide staining gave values of 1.584 pg in L. luzuloides, 1.566 pg in L. nivea, and 3.034 pg in L. multiflora. Variability in relative nuclear genome size within species was measured by 4',6-diamidino-2-phenylindole staining. In contrast with previous reports, variability was fairly small and ranged from 1.796 to 1.864 pg in L. luzuloides, from 1.783 to 1.847 pg and from 1.737 to 1.808 pg in two populations (S and F) of L. nivea, respectively, and from 3.125 to 3.271 pg in L. multiflora. An intraplant (interleaf) genome size variation was also observed and its possible causes are discussed.Key words: Luzula, holokinetic chromosomes, agmatoploidy, symploidy, polyploidy, nuclear DNA amount, intraplant genome size variability, flow cytometry.



Botany ◽  
2018 ◽  
Vol 96 (6) ◽  
pp. 397-410 ◽  
Author(s):  
V. Kolarčik ◽  
V. Kocová ◽  
D. Caković ◽  
T. Kačmárová ◽  
J. Piovár ◽  
...  

We used flow cytometry (FCM) to investigate genome size variation in two polymorphic allopolyploids, Onosma arenaria Waldst. and Kit. and O. pseudoarenaria Schur, in Central Europe and the Balkan Peninsula. An intercalating DNA stain, propidium iodide (PI), and internal standardization were used. Our data showed that cytosolic compounds may be present in FCM samples and could inhibit, or more frequently promote, PI intercalation. In the absence of PI intercalation interference, leaf-based genome size estimates were observed to be lower than seed-based ones in O. pseudoarenaria, whereas no difference was recorded in O. arenaria. In incubation tests, genome size values frequently increase after a longer staining period. For final genome size measurements, we applied the FCM protocol based on seed material using a ∼150 min incubation period, and provide evidence of mean genome size variation among populations of both species. Two and four natural genome size groups were revealed in O. arenaria and O. pseudoarenaria respectively. Group mean genome sizes varied considerably in both O. arenaria (5.36–5.76 pg) and O. pseudoarenaria (5.98–6.58 pg). This extensive genome size variation is attributed to unexplored taxonomic heterogenity in both taxa. Future taxonomic revision of the group may be supported with genome size measurements obtained using an appropriately standardized methodology.



Sign in / Sign up

Export Citation Format

Share Document