scholarly journals Impact of climatic changes in the Late Pleistocene on migrations and extinctions of mammals in Europe: four case studies

2016 ◽  
Author(s):  
Mateusz Baca ◽  
Adam Nadachowski ◽  
Grzegorz Lipecki ◽  
Paweł Mackiewicz ◽  
Adrian Marciszak ◽  
...  

Climate changes that occurred during the Late Pleistocene have profound effects on the distribution of many plant and animal species and influenced the formation of contemporary faunas and floras of Europe. The course and mechanisms of responses of species to the past climate changes are now being intensively studied by the use of direct radiocarbon dating and genetic analyses of fossil remains. Here, we review the advances in understanding these processes by the example of four mammal species: woolly mammoth (Mammuthus primigenius), cave bear (Ursus spelaeus s. l.), saiga antelope (Saiga tatarica) and collared lemmings (Dicrostonyx ssp.). The cases discussed here as well as others show that the migrations, range shifts and local extinctions were the main responses to climate changes and that the dynamics of these climate driven processes were much more profound than it was previously thought. Each species reacted by its individual manner, which depended on its biology and adaptation abilities to the changing environment and climate conditions. The most severe changes in European ecosystems that affected the largest number of species took place around 33–31 ka BP, during the Last Glacial Maximum 22–19 ka BP and the Late Glacial warming 15–13 ka BP.

1990 ◽  
Vol 34 (3) ◽  
pp. 269-281 ◽  
Author(s):  
Peter D. Lea ◽  
Christopher F. Waythomas

AbstractNonglaciated lowlands in central and southwestern Alaska contain extensive deposits of upper-Quaternary eolian sand, derived largely from major outwash rivers. Although surface dunes are common, deep exposures consistently reveal that subhorizontally stratified sand and silt deposits dominate over dune cross strata. We hypothesize that (1) many of the subhorizontally stratified deposits represent full-glacial eolian sand sheets, formed when sand supply was limited by seasonally variable combinations of ice cementation, snow cover, high groundwater tables, and vegetation, and (2) many surface dunes reflect late-glacial and postglacial reworking under conditions of increased short-term availability of loose sand. The morphology of some surface dunes may therefore reflect mainly the intensity of reworking since the last glacial maximum, rather than full-glacial paleowind vectors or the age of the bulk of the underlying deposits.


2010 ◽  
Vol 73 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Xiaoping Yang ◽  
Louis A. Scuderi

Large areas in western China were wetlands or less arid between 40 and 30 ka, corresponding to the “Greatest Lake Period” on the adjacent Tibetan Plateau. During the last glacial maximum, some of these western Chinese deserts again experienced wetter conditions; however, at the same time the sandy lands in the eastern Chinese desert belt experienced an activation of aeolian dunes. While interpretations of the mid-Holocene environment in the deserts of China are controversial, it is quite likely that it was more humid not only in the eastern areas influenced by monsoon climate systems but also in the western deserts where moisture is currently associated with westerlies. Evaluation of lacustrine records in the lakes recharged by dryland rivers and the complex interactions of these systems, as well as other paleoenvironmental proxies such as the Artemisia/Chenopodiaceae ratio, should be interpreted with greater caution. Facing the highlighted uncertainties in our understanding of climate changes in Chinese deserts, it is hoped that this special issue will improve our knowledge considerably.


2021 ◽  
Author(s):  
Janina J. (Bösken) Nett ◽  
Frank Lehmkuhl ◽  
Erik J. Schaffernicht ◽  
Stephan Pötter ◽  
Philipp Schulte ◽  
...  

<p>Loess is an important archive of environmental change covering approximately 10% of the Earth’s terrestrial surface. Numerous studies have analyzed loess deposits and in particular loess-paleosol sequences. To analyze these sequences, it is important to know the spatial distribution of aeolian sediments, their location relative to potential source areas, and the geomorphology of the sink area. We investigated these aspects by compiling a new map of aeolian sediments in Europe using highly resolved geodata from 27 countries (Lehmkuhl et al., in press). To determine the most relevant factors for the European loess distribution, we further mapped potential source areas and divided the map into different facies domains. We analyzed the geomorphological and paleoenvironmental effects on the deposition and preservation of Late Pleistocene loess. Finally, the geodata-based results were compared with results obtained from high-resolved regional numerical climate-dust experiments for the Last Glacial Maximum (LGM) in Europe, which were performed with the LGM-adapted Weather Research and Forecasting model coupled with Chemistry (WRF-Chem-LGM; Schaffernicht et al., 2020).  Complementing the mapping-based findings with the WRF-Chem-LGM experiments results in an improved understanding of the Late Pleistocene loess landscape in Europe.</p><p> </p><p>References:</p><p>Lehmkuhl, F., Nett, J.J., Pötter, S., Schulte, P., Sprafke, T., Jary, Z., Antoine, P., Wacha, L., Wolf, D., Zerboni, A., Hošek, J., Marković, S.B., Obreht, I., Sümegi, P., Veres, D., Zeeden, C., Boemke, B., Schaubert, V., Viehweger, J., Hambach, U. (in press). Loess landscapes of Europe – Mapping, geomorphology, and zonal differentiation. Earth-Science Reviews. Doi: https://doi.org/10.1016/j.earscirev.2020.103496</p><p>Schaffernicht, E.J., Ludwig, P., Shao, Y., 2020. Linkage between dust cycle and loess of the last Glacial Maximum in Europe. Atmospheric Chemistry and Physics 20, 4969–4986. Doi:10.5194/acp-20-4969-2020.</p>


Quaternary ◽  
2018 ◽  
Vol 1 (2) ◽  
pp. 11 ◽  
Author(s):  
Jadranka Mauch Lenardić ◽  
Siniša Radović ◽  
Ankica Oros Sršen ◽  
Nada Horvatinčić ◽  
Petar Kostešić ◽  
...  

Eight anatomically and taxonomically different finds are presented in this paper, and they belong to four taxa: woolly mammoth (Mammuthus primigenius), giant deer (Megaloceros giganteus), red deer (Cervus elaphus), and dog (Canis familiaris). All specimens represent allochthonous Late Pleistocene and Holocene animal remains, and all were dredged during the gravel exploitation at the Sekuline site near Molve (Podravina region, SW Pannonian basin, NE Croatia). Mammoth remains (bone and tusk fragments) were radiocarbon dated, and these are the first absolute dates on mammoths in Croatia. One upper last left deciduous premolar (dP4 sin.) also belongs to the same species. Ascribed to a dog is one well-preserved skull with a peculiar abscess scar on the maxillary bone as the result of an inflammatory process on the carnassial (P4) premolar. The Late Pleistocene cervid remains are giant deer, while the other cervid finds were determined to be red deer of the Holocene age. Morphometrical and taphonomical data are presented for each specimen. Such fossil and recent bone/tooth aggregates are characteristic of fluvial deposits and selective collecting. Although lacking stratigraphic provenance, these finds help to fulfil the gaps in palaeoenvironmental, palaeoecological, and palaeoclimate reconstructions of Podravina and its neighbouring areas.


1985 ◽  
Vol 24 (3) ◽  
pp. 285-294 ◽  
Author(s):  
A. B. Kazanskiy

A theory of the world's sea-level fluctuations during late Pleistocene time, based on the analysis of the general equation of the mass balance between ocean water and inland water, suggests that the exchange of water masses between the ocean and the land, where at continental glaciation periods water is stored as ice, occurs only as a result of global climatic changes. The tectonic effect is considered insignificant for late Pleistocene time. The proposed theory explains the asymmetric character and the sawlike shape of the curve of the main cycles of sea-level fluctuations. The theory also makes it possible to construct a diagram of sea-level fluctuations from the last glacial maximum to the present time. This diagram is governed by two parameters, the amount of the average “effective” evaporation from the world's ocean surface (evaporation minus rainfall) and the rate of the sea-level rise at the present time. The resulting theoretical curve agrees well with known estimates of sea level within the time span being considered. The comparison of the theoretical curve with these estimates eliminates the apparent discrepancy between data obtained by different methods: measurements of old coastline and the isotopic composition of bottom sediments.


2020 ◽  
Author(s):  
Soledad García-Gil ◽  
Víctor Cartelle ◽  
Castor Muñoz-Sobrino ◽  
Natalia Martínez-Carreño ◽  
Iria García-Moreiras

<p>Understanding coastal responses to relative sea level rise is key to be able to plan for future changes and develop a suitable managing strategy. The sedimentary record of the Late-Pleistocene and Holocene transgression provides a natural laboratory to study the long-term changes induced in coastal landscapes by the rapid sea level rise. As sea level rises, coastal morphology continually adapts towards equilibrium changing the landscape and reshaping the distribution of sedimentary environments.<br>The Ría de Ferrol is a confined tide-dominated incised valley located in the mesotidal passive Atlantic margin of western Galicia (NW Spain).  A multidisciplinary approach was used to identify the elements of sedimentary architecture within its sedimentary record since the Last Glacial Maximum. The sedimentary evolution was reconstructed combining seismic and sedimentary facies analysis with radiocarbon, geochemical and pollen data.<br>The Ría de Ferrol is characterised by a particular morphology with a rock-incised narrow channel in the middle of the basin (the Ferrol Strait) connecting an inner shallower sector with an outer deeper sector. The inner sector is characterised by low energetic conditions and is where the main fluvial inputs occur. The outer sector is connected to the shelf.<br>The main factor influencing the sedimentary evolution of the Ría de Ferrol incised valley was Late Pleistocene and Holocene sea-level rise. However, this evolution was modulated by the antecedent morphology, particularly once the middle strait became flooded during the Holocene transgression. Three main phases of evolution are distinguished: a fluvial valley drained by a braided river system, a tide-dominated estuary and a shallow marine basin (ria).<br>During the lowstand of the Last Glacial Maximum (ca 20 kyr BP), the ria was a fluvial valley whose sediments are mainly preserved in the inner sector. Sediments cores recovered sediments from ponds and stagnant areas, dated to be older than 10790-11170 cal yr BP.<br>During the Holocene, the basin turned into a tide-dominated estuary whose facies distribution was conditioned by the strait. The strait acted as a rock-bounded tidal inlet enhancing tidal erosion and deposition at both ends, where an ebb-tidal delta and tidal sandbanks appear. At this time, extensive tidal flats occupied most of the inner sector, dissected by estuarine channels of varied dimensions. Radiocarbon data showed ages from 8610-8910 to 5760-5940 cal yr BP.<br>An erosive episode is identified after 6 cal kyr BP with the formation of a ravinement surface. Wave and tidal energy were split by the middle strait. A wave ravinement surface is identified in the outer sector, while a coetaneous tidal ravinement surface occurs in the inner sector.<br>Slow sea-level rise after ca 4 ka BP finally forced rivers to retreat to the present position, causing the dispersion of their energy and leading to the final evolution of the area into a fully marine system.</p>


1996 ◽  
Vol 46 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Jean-Claude Thouret ◽  
Thomas Van der Hammen ◽  
Barry Salomons ◽  
Etienne Juvigné

Using data from glacial geomorphology, tephra-soil stratigraphy and mineralogy, palynology, and radiocarbon dating, a sequence of glacial and bioclimatic stades and interstades has been identified for the past ca. 50,000 yr in the Ruı́z-Tolima massif, Cordillera Central. Six cold stades separated by warmer interstades occurred before 48,000, between 48,000 and 33,000, between 28,000 and 21,000, from ≥16,000 to ca. 14,000, ca. 13,000–12,400, and ca. 11,000–10,000 yr B.P. Although the radiocarbon ages are minimum-limiting ages obtained from tephra layers on top of tills, the tills are not significantly older because most are bracketed by dated tephra sets in measured stratigraphic sections. Two minor moraine stages likely reflect glacier pauses during cold intervals ca. 7400 yr B.P. and slightly earlier. Finally, glaciers readvanced between the 17th and 19th centuries. In contrast to the glacier cover (ca. 34 km2) on volcanoes of the massif during the last glacial maximum (LGM) the ice cover expanded to 1200 km2 and was still 800 km2 during late-glacial time (LGT). Glacier reconstructions based on the moraines suggest depression of the equilibrium line altitude (ELA) by ca. 1100 m during the LGM and 500–600 m during LGT relative to the modern ELA which lies at ca. 5100 m in the Cordillera Central. Glaciers in this region apparently reached their greatest extent when the climate was cold and moist, e.g., during stades corresponding to marine isotope stage 3; glaciers were still expanding during the LGM ca. 28,000–21,000 yr B.P., but they shrank considerably after 21,000 yr B.P. because of greatly reduced precipitation.


Sign in / Sign up

Export Citation Format

Share Document