aeolian dunes
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 15)

H-INDEX

21
(FIVE YEARS 1)

Geomorphology ◽  
2022 ◽  
Vol 398 ◽  
pp. 108066
Author(s):  
J.L. Goy ◽  
C. Zazo ◽  
C.J. Dabrio ◽  
A.M. Martínez-Graña ◽  
J. Lario ◽  
...  
Keyword(s):  

Geomorphology ◽  
2021 ◽  
Vol 392 ◽  
pp. 107916 ◽  
Author(s):  
Zihao Hu ◽  
Xin Gao ◽  
Jiaqiang Lei ◽  
Na Zhou

Geology ◽  
2021 ◽  
Author(s):  
Mackenzie Day

Wind-blown sand self-organizes into bedforms that have now been identified on six different planetary bodies. These bedforms, including ripples and dunes, exhibit patterns that are diagnostic of surface-atmosphere interactions and can be used to interpret winds and sediment supply from satellite images of planetary surfaces. Patterns in dune and ripple fields change when one or more bedforms interact, for example, by linking, colliding, or merging with one another. When two bedforms interact, the cross-strata developed by the bedforms include a bounding surface where the two bedforms combined. These “interaction bounding surfaces” have been interpreted from ancient and modern strata in recent literature, but they have not yet been identified beyond Earth. On Mars, aeolian dunes and ripples form much as they do on Earth, but additional enigmatic bedform types are also present. Transverse aeolian ridges are straight-crested bedforms found abundantly on Mars, but with few analogs on Earth. Formation mechanisms for these enigmatic bedforms range from dune-like migration and construction to growth in place via wedge stacking or kinetic sieving. In this work, I studied exposed stoss-slope stratification on these enigmatic Martian bedforms to (1) identify the first in situ examples of interaction bounding surfaces captured visually, and (2) demonstrate that the transverse aeolian ridges must have been forward migrating.


2021 ◽  
Vol 91 (5) ◽  
pp. 495-506
Author(s):  
Feifei Zhao ◽  
Benjamin T. Cardenas ◽  
Wonsuck Kim

ABSTRACT The stratal types composing aeolian dunes preserve a record of the transport and sorting of grains and are categorized into: 1) grainflow strata, 2) grainfall laminae, and 3) wind-ripple laminae. The arrangement of these deposits in the cross beds of a formative dune is largely unexplored. Here, field results from White Sands Dune Field, New Mexico, USA, are used to test the hypothesis that dune height controls the arrangement, abundance, and geometry of cross-stratification types. Grainflow thicknesses and deposit widths were measured on wind-scoured stoss-side exposures of seven crescentic dunes with heights ranging from 1.7 m to 11.2 m. Dozens of grainflow thickness measurements were taken along transverse-oriented strata normal to the crest on each dune. The results show that grainflow thickness averages from 1 cm to 4 cm. These data show a positive trend between mean grainflow thickness and dune height but only for the grainflow thicknesses measured at the bases of dunes. The tallest dune (11.2 m) produced many thick grainflow packages of 10 cm to 30 cm in which individual grainflow strata were indistinguishable from each other. This amalgamation was also found to be characteristic of larger dunes—the product of a lack of grainfall deposits separating individual grainflows. These differences in grainflow strata at the bases of dune lee slopes are linked to the temporary storage of sediment along the upper parts of lee slopes. In taller dunes with longer lee slopes, amalgamated grainflows which require multiple avalanche events and take longer time to reach the base transport temporarily stored sediment at upper parts of the slope. This allows time for wind ripples to rework accumulations near the base, where grainfall deposition is also limited. Shorter dunes lack this temporary storage mechanism, as individual grainflows can move across the entire lee slope in a single event, and grainfall accumulates across the entire lee slope. These stratigraphic measurements and process-based understanding will be useful in estimating original dune height in ancient cross-strata and will lead to a better interpretation of aeolian stratigraphy.


2021 ◽  
Author(s):  
Pei Zhang

<p>Grainflow, a fundamental agent moving sediment from the crest to the base of dune surfaces, leaves a temporary geomorphological signature on the slipfaces of aeolian dunes. The grainflow signature reflects the complex morphodynamical interaction between wind-driven sand transport and gravity-driven grainflow on an inclined surface. The purpose of this study is to present a method to objectively and efficiently delineate grainflow boundaries and characterize their morphology features by processing Digital Elevation Models (DEMs) obtained by terrestrial laser scanner in Matlab and ArcGIS. The method allows large numbers of grainflows to be quickly and objectively delineated and extracted from LiDAR data. As an aid tp subsequent analysis, the process avoids the subjective nature of manual measurement, thereby improving the commensurability of different grainflow regimes in both terrestrial and extraterrestrial environments. The results can be compared with the available grainflows morphology characteristics which are manually measured. The method is presented here in the context of analyzing grainflows and related processes on the slipfaces of dunes, but it is applicable over the broader scope of other forms of slope failure and geophysical flows, such as avalanches, snowslides, landslides, and debris flows.</p>


2020 ◽  
Vol 37 (2) ◽  
pp. 61-90
Author(s):  
Shanmugam G

Abstract This review covers 135 years of research on gravity flows since the first reporting of density plumes in the Lake Geneva, Switzerland, by Forel (1885). Six basic types of gravity flows have been identified in subaerial and suaqueous environments. They are: (1) hyperpycnal flows, (2) turbidity currents, (3) debris flows, (4) liquefied/fluidized flows, (5) grain flows, and (6) thermohaline contour currents. The first five types are flows in which the density is caused by sediment in the flow, whereas in the sixth type, the density is caused by variations in temperature and salinity. Although all six types originate initially as downslope gravity flows, only the first five types are truly downslope processes, whereas the sixth type eventually becomes an alongslope process. (1) Hyperpycnal flows are triggered by river floods in which density of incoming river water is greater than the basin water. These flows  are confined to proximity of the shoreline. They transport mud, and they do not transport sand into the deep sea. There are no sedimentological criteria yet to identify hyperpycnites in the ancient sedimentary record.  (2) A turbidity current is a sediment-gravity flow with Newtonian rheology  and turbulent state in which sediment is supported by flow turbulence and from which deposition occurs through suspension settling. Typical turbidity currents can function as truly turbulent suspensions only when their sediment concentration by volume is below 9% or C < 9%. This requirement firmly excludes the existence of 'high-density turbidity currents'. Turbidites are recognized by their distinct normal grading in deep-water deposits.  (3) A debris flow (C: 25-100%) is a sediment-gravity flow with plastic rheology and laminar state from which deposition occurs through freezing en masse. The terms debris flow and mass flow are used interchangeably. General characteristics of muddy and sandy debrites are floating clasts, planar clast fabric, inverse grading, etc.  Most sandy deep-water deposits are sandy debrites and they comprise important petroleum reservoirs worldwide. (4) A liquefied/fluidized low (>25%) is a sediment-gravity flow in which sediment is supported by upward-moving intergranular fluid. They are commonly triggered by seismicity. Water-escape structures, dish and pillar structures, and SSDS are common. (5) A grain flow (C: 50-100%) is a sediment-gravity flow in which grains are supported by dispersive pressure caused by grain collision. These flows are common on the slip face of aeolian dunes. Massive sand and inverse grading are potential identification markers.  (6) Thermohaline contour currents originate in the Antarctic region due to shelf freezing and  the related increase in the density of cold saline (i.e., thermohaline) water. Although they begin their journey as downslope gravity flows, they eventually flow alongslope as contour currents. Hybridites are deposits that result from intersection of downslope gravity flows and alongslope contour currents. Hybridites mimic the "Bouma Sequence" with traction structures (Tb and Tc). Facies models of hyperpycnites, turbidites, and contourites  are obsolete. Of the six types of density flows, hyperpycnal flows and their deposits are the least understood.


2020 ◽  
Vol 90 (12) ◽  
pp. 1734-1746
Author(s):  
Jasmine Mason ◽  
Benjamin T. Cardenas ◽  
Mackenzie D. Day ◽  
Max Daniller-Varghese ◽  
Sarah C. Brothers ◽  
...  

ABSTRACT A time series of aerial images of a dune field on a migrating free bar in the North Loup River, Nebraska, is used to generate a quantified dataset that allows analyses of crestline deformation, dune interaction type and spatial density, and impact of spurs. Measurement of dune parameters show that the dune field maintained a dynamic steady-state pattern, despite high rates of deformation, common interactions, and sediment bypassing. Mapped crestlines had a mean migration rate of 8 cm/min. The mean deformation rate, quantified using a partial Procrustes analysis, was 2 cm/min, indicating that along individual crestlines, local migration varied ± 25% from the bedform mean. Dune interactions caused the break-apart and recombination of crestline segments, thus limiting pattern variability caused by deformation. Although most of the 50 documented interactions are comparable to those observed in aeolian dune fields, defect-driven interactions are less common and interactions caused by migration of the convex-downstream nose of the dunes were observed, which has not been reported in aeolian dunes. The spatial density of interactions is consistent with that derived for aeolian crescentic-dune fields, in spite of differences in ambient fluid and dune size. Although spurs were ubiquitous, their presence did not have a quantifiable impact on deformation and interactions as compared to areas where spurs were absent, suggesting that these short-lived features affect instantaneous flux rates only.


Geosciences ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 410
Author(s):  
Koji Minoura ◽  
Norihiro Nakamura

The Pacific coast of the Shimokita Peninsula, Northeast Japan, is occupied by one of the larger dune complexes in Japan. This coastal aeolian dune complex developed during the Holocene in a monsoon-influenced temperate climatic belt. The stratigraphic and sedimentological characteristics of outcrops, exposures and cores indicate that four generation of aeolian dunes are presented. These dunes developed during eustatic regression following the post-glacial sea-level highstand. Seaward shoreline movement, combined with strong winds from the Pacific Ocean, enhanced aeolian grain transport on the beach, resulting in the onset of dune growth and the consequent shrinkage of the coastal forest. Northeast Japan is located in a transitional zone affected largely by monsoonal circulation from Siberia and Southeast Asia. Thus, the regional climate is responsible for atmospheric changes on a hemispheric scale. Intensified monsoons contributed to flooding produced by rains and snow-melt. Steep increases in annual precipitation at 7200–6300, 4700–3600, 3050–2500, 1850–1100, and 550–200 calendar years before present (cal. yr. BP) increased the amount of surface erosion, causing a large volume of sediment discharge toward the coast. Shimokita has experienced frequent earthquakes and tsunamis, which have reduced dune landform relief by sediment displacement.


Sign in / Sign up

Export Citation Format

Share Document